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INTRODUCTION

The ocean is aphotic and therefore aphotosynthetic
below the upper few tens to hundreds of meters, yet

there is animal and microbial life throughout, includ-
ing down to the greatest depths. Except for communi-
ties around hydrothermal vents, which produce
organic matter by bacterial chemosynthesis, the
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ABSTRACT: Zooplankton fecal pellets have long been thought to be a dominant component of the
sedimentary flux in marine and freshwater ecosystems, but that view is changing. The last 2 decades
have seen publication of >500 studies using sediment traps, which reveal that zooplankton fecal
pellets often constitute only a minor or variable proportion of the sedimentary flux. Substantial pro-
portions of this flux are from organic aggregates (‘marine snow’) of various origins, including phyto-
plankton blooms, which sediment directly to the benthos. It now appears that mainly large fecal pel-
lets of macrozooplankton and fish are involved in the sedimentary flux. Smaller fecal pellets of
microzooplankton and small mesozooplankton are mostly recycled or repackaged in the water
column by microbial decomposition and coprophagy, contributing more to processes in the water
column than flux to the benthos. The relative contributions of fecal pellets, marine snow and sinking
phytoplankton to the vertical flux and recycling of materials in the water column are highly variable,
dependent upon multiple interacting factors. These include variations in productivity, biomass, size
spectra and composition of communities in the overlying water columns, and trophic interactions
between various components of the plankton and nekton communities at various times, locations and
depths. Other factors include differences in sinking rates, sizes, composition and pollutant contents of
fecal pellets produced by various sizes of zooplankters, and zooplankton feeding-fecal pellet produc-
tion interactions in relation to upwelling and El Niño periods, seasonal life-history-related zooplank-
ton vertical migrations and long-term oceanographic regime shifts. There are also suggestions from
the geological record that zooplankton fecal pellets may have been important in ancient oceans. The
ecological roles of marine snow and phytoplankton aggregates in sedimentary flux also depend on a
variety of interacting factors, including sources of origin, degrees of microbial colonization, depth
distributions, sinking rates and ingestibility by consumers. Perhaps the major reversal of the previous
paradigm on the role of fecal pellets in the sedimentary flux over the last 2 decades has been the
realization that much, if not most, of the organic rain from the epipelagic to the abyss is due to direct
sedimentation of aggregated phytoplankton, which does not appear to undergo consumption in the
water column, and which may be related to seasonality of surface production cycles. Further, there is
emerging evidence for benthic responses to sedimented phytodetritus, including apparent synchrony
of reproductive cycles of some deep-sea benthic animals with seasonality of sinking of surface
blooms. Such episodic input of surface phytodetritus may help resolve apparent discrepancies
between average supply and demand of organic matter required to maintain benthic community
metabolism. The sedimentary flux of fecal pellets, marine snow and sinking phytoplankton is an
important component of the biological pump that not only transports and recycles materials in the sea
but also may help scrub greenhouse gases from the atmosphere.
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organic matter required to maintain deep-water
pelagic and benthic ecosystems must ultimately derive
from the photosynthetic system in the epipelagic. This
has been recognized at least since Agassiz (1888) pro-
posed that ‘…deep-sea organisms are nourished by a
“rain” of organic detritus from overlying surface
waters.’ Since sedimenting organic particles are
subject to a gauntlet of microbial degradation, it has
long been thought that fast-sinking materials such as
zooplankton fecal pellets are primary agents of the
downward flux in the sea.

Turner & Ferrante (1979) reviewed literature on
transport potential, nutritional content, recycling by
decomposition and coprophagy, and pollutant content
of zooplankton fecal pellets in marine and freshwater
ecosystems. During the intervening 2 decades, it has
become apparent that zooplankton fecal pellets
remain important agents of vertical flux under some
circumstances, but that in other cases, most fecal
pellets are reprocessed in the water column by micro-
bial decomposition or coprophagy. Further, in many
instances, most of the vertical flux is due not to fecal
pellets, but to marine snow or sedimenting phyto-
plankton blooms that descend to the benthos without
entering water-column consumer food webs. It is also
apparent that the dynamics of fecal pellets, marine
snow and sinking phytoplankton blooms are important
not only in the flux to the benthos but also to pelagic
communities throughout the water column.

Removal of carbon dioxide from the atmosphere, and
its processing by the photosynthetic system in the
upper ocean, with subsequent descent and sequester-
ing in the deep sea may be important aspects of the
‘biological pump’ (Longhurst & Harrison 1988) mitigat-
ing anthropogenic increases in greenhouse gases
(Longhurst 1991, Sarmiento 1991). The sedimentary
particulate flux from varying combinations of sinking
fecal pellets, marine snow and phytoplankton is gener-
ally considered much more important than the active
downward flux due to vertical migrations of zooplank-
ton and nekton (Longhurst & Harrison 1988, Longhurst
et al. 1989, 1990, Longhurst & Williams 1992), although
there may be exceptions to this (Bradford-Grieve et al.
2001, Hays et al. 2001), and vertically migrating zoo-
plankton may contribute substantially to the flux of
dissolved organics and inorganics (Dam et al. 1995,
Hays et al. 1997, Zhang & Dam 1997, Steinberg et al.
2000, Al-Mutairi & Landry 2001). Important reviews
and analyses of vertical flux processes have appeared
over the last 2 decades (Angel 1984, Smetacek 1984,
Hargrave 1985, Fowler & Knauer 1986, Alldredge &
Silver 1988, Michaels & Silver 1988, Angel 1989,
Bishop 1989, Bruland et al. 1989, Legendre & Gosselin
1989, Longhurst & Harrison 1989, Peinert et al. 1989,
Toggweiler 1989, Wefer 1989, Banse 1990, Fowler

1991, Longhurst 1991, 2000, Noji 1991, Silver & Gow-
ing 1991, Wassmann 1991a, 1998, Fortier et al. 1994,
Wassmann 1994, Legendre & Le Fèvre 1995, Thingstad
& Rassoulzadegan 1995, Bathmann 1996, Kiørboe
1996, Legendre & Rassoulzadegan 1996, Wassmann et
al. 1996a,b, Butterfield 1997, Lampitt & Antia 1997,
Azam 1998, Legendre & Michaud 1998, Falkowski et
al. 2000). The present review will update and extend
that of Turner & Ferrante (1979) to present the emerg-
ing view that zooplankton fecal pellets are often less
important in the sedimentary flux than marine snow
and sinking phytoplankton blooms.

IMPORTANCE OF ZOOPLANKTON FECAL 
PELLETS

‘Indeed, this concern for bioenergetics, energy flow, and
processes has been so pervasive that biological oceano-
graphy now suffers from an agricultural mentality that
would have us believe that bioenergetics is the only valid
subject of investigation. At times this narrow outlook has
even degenerated into the peculiar belief that the waste
products of an animal are somehow more important than
the animal itself.’ 

Hamner (1985) p. 417

Much of the early evidence for the importance of
fecal pellets in the sedimentary flux came from studies
employing sediment traps. Turner & Ferrante (1979)
cited only the first few of the flurry of studies, begin-
ning mainly in the mid-1970s, using sediment traps
(Moore 1931, Schrader 1971, Steele & Baird 1972,
Ansell 1974, Wiebe et al. 1976, Soutar et al. 1977,
Honjo 1978, Spencer et al. 1978a,b, Knauer et al. 1979)
or large-volume filtration systems (Bishop et al. 1977,
1978) to quantify vertical flux in the open sea, as well
as in coastal waters (Hargrave & Taguchi 1978,
Smetacek et al. 1978, Taguchi & Hargrave 1978).
Publications (>500) from most sediment-trap studies
appeared after the Turner & Ferrante (1979) review
(Table 1).

Many sediment-trap studies have revealed that
zooplankton fecal pellets or fecal matter are important
components of rapid particulate flux in the sea.
Perhaps the most dramatic evidence for this was the
discovery that radionuclides from the Chernobyl
disaster were present in zooplankton fecal pellets in
sediment traps at 200 m depth in the Mediterranean an
average of 7 d after peak radioactivity was delivered to
the surface and <2 wk after the explosion (Fowler et al.
1987). On the basis of theoretical considerations,
Jumars et al. (1989) have also concluded that the
principal pathway of dissolved organic carbon from
phytoplankton back to bacterioplankton (i.e., ‘closing
the microbial loop’) is through rapid release from
zooplankton fecal pellets.
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1979: Crisp et al., Hargrave & Burns, Hinga et al., Larrance et al.,
Rowe & Gardner

1980: Bishop et al., Brewer et al., Gardner a,b, Honjo, Honjo et
al., Iseki et al., Tanoue & Handa, Volkman et al., Wakeham et
al.

1981: Blomqvist & Kofoed, Chester & Larrance, Deuser et al. a,b,
Dunbar & Berger, Dymond et al., Fellows et al., Iseki, Knauer
& Martin, Landing & Feely, Lorenzen et al., Sasaki &
Nishizawa, Syvitski & Murray, Takahashi & Honjo, Thunell &
Honjo, Urrère & Knauer

1982: Ducklow et al., Feely et al., Gagosian et al., Honjo, Honjo
et al. a,b, Lee & Cronin, Repeta & Gagosian, Staresinic et al.,
Taguchi a,b, Wefer et al.

1983: Burns & Villeneuve, De Baar et al., Deuser et al. a,b,
Falkowski et al., Fowler & Fisher, Fowler et al., Gagosian et al.
a,b, Gardner et al., Gowing & Silver, Gulliksen, Lee et al.,
Livingston & Anderson, Lorenzen & Welschmeyer, Lorenzen
et al. a,b, Small et al., Staresinic et al., Wassmann

1984: Andrews et al., Betzer et al. a,b, Bishop & Marra, Cowen &
Silver, Davies & Payne, Dunbar, Gardner et al., Ittekkot et al.,
Izdar et al., Jickells et al., Karl & Knauer a,b, Karl et al., Knauer
et al., Lee & Cronin, Murphy & Dymond, Repeta & Gagosian,
Silver et al., Tett, Wakeham et al., Wassmann, Welschmeyer et
al.

1985: Altabet & Deuser, Bacon et al., Baker et al., Bé et al., Burns
et al., Cadée, Cowen & Bruland, Deming, Deming & Colwell,
Downs & Lorenzen, Ducklow et al., Dymond & Lyle, Gowing &
Silver, Noriki et al. a,b, Schnack, Wassmann, Welschmeyer &
Lorenzen

1986: Bishop & Joyce, Bishop et al. a,b, Bodungen, Bodungen et
al., Cadée, Deuser, Emerson et al., Feeley et al., Fowler et al.,
Harada & Tsunogai, Kajihara et al., Knap et al., Larsson et al.,
Matsueda & Handa, Müller et al., Noji et al., Noriki & Tsuno-
gai, Peinert, Pisias et al., Simoneit et al., Skjoldal & Wassmann,
Takahashi, Taylor et al., Tsunogai et al. a,b, Wassmann,
Wassmann et al.

1987: Asper, Atkinson & Wacasey, Bathmann et al., Benli, Bern-
stein et al., Bodungen et al., Broman et al., Buesseler et al.,
Carey, Coale & Bruland, Deuser, Emerson & Roff, Fowler et al.,
Harding et al., Heussner et al., Honjo et al., Hsiao, Izdar et al.,
Kempe & Nies, Kempe et al., Liebezeit, Martin et al., Michaelis
et al., Nelson et al., Peinert et al., Pilskaln & Honjo, Richardson
& Hollister, Small et al., Smith, Smith et al., Takahashi a,b,c,
Tambiev, Tanoue & Handa, Tsunogai & Noriki

1988: Altabet, Baker et al., Bathmann, Biscaye et al., Bodungen
et al., Deuser et al., Dymond & Collier, Emerson & Hedges,
Fischer et al., Fisher et al., Hedges et al. a,b, Heussner et al.,
Honjo & Doherty, Honjo et al., Karl et al., Kempe & Jenner-
jahn, Kusakabe et al., Laws et al., Lee et al., Maita et al.,
Moore & Dymond, Morris et al., Naes et al., Sancetta &
Calvert, Sasaki et al., Walsh et al. a,b, Wefer et al.

1989: Altabet a,b, Bhosle et al., Costello et al., Deuser & Ross,
Faganeli, Fleeger et al., Graf, Hargrave et al., Laws et al.,
Longhurst et al., Lutter et al., Nair et al., Nöthig & Bodungen,
Pedros-Alio et al., Riebesell, Sancetta a,b, Small et al., Smith,
Smith et al. a,b, Takahashi, Taylor, Tremblay et al., Wakeham
& Lee, Wassmann

1990: Banse, Bathmann et al., Berger & Wefer, Bernstein et al.,
Buesseler et al., Coale, Deuser et al., Gadel et al., Grimalt et
al., Gundersen & Wassmann, Hay et al., Huh et al., Jahnke et
al., Knauer et al., Longhurst et al., Meinecke & Wefer,
Michaels et al., Monaco et al. a,b, Montgomery et al., Novits-
ky, Peterson & Dam, Reemtsma et al., Rowe et al., Sakugawa
et al., Takahashi et al., Vangriesheim & Khripounoff, Wake-
field & Smith, Wassmann a,b, Wassmann et al., Wefer et al.

1991: Abelmann & Gersonde, Altabet et al., Bathmann et al.,

Bodungen et al., Buesseler, Fabry & Deuser, Fowler et al.,
Hebbeln & Wefer, Ittekkot et al., Karl & Knauer, Karl et al.,
Knauer, Leventer, Posedel & Faganeli, Proctor & Fuhrman,
Rutgers van der Loeff & Berger, Sancetta et al., Sautter &
Thunell, Taylor & Karl, Tsunogai & Noriki, Voss, Wassmann
a,b, Wassmann et al., Wefer & Fischer

1992: Abelmann a,b, Asper et al., Ayukai & Hattori, Bianchi et
al., Bishop et al., Cadée et al., Cowen, González, Honjo et al.,
Lampitt, Landry et al., Lee et al., Lohrenz et al., Puàkarić et al.,
Rau et al., Reimers et al., Simon et al., Small & Ellis, Smith et
al., Waite et al.

1993: Bauerfeind et al., Boltovskoy et al., Gardner et al., Gowing,
Haake et al., Head & Horne, Honjo & Manganini, Lampitt et
al. a,b, Lenz et al., Lochte et al., Martin et al., Miquel et al.,
Noji et al., Passow & Peinert, Passow et al., Pfannkuche &
Lochte, Reinfelder et al., Wakeham et al., Weeks et al.

1994: Anderson et al., Biscaye & Anderson, Carlson et al.,
Falkowski et al., González & Smetacek, González et al. a,b,
Hargrave et al., Head et al., Karl & Tilbrook, Kiørboe et al.,
Landry et al. a,b, Lane et al., Marty et al., Michaels et al. a,b,
Miquel et al., Peinert & Miquel, Rowe et al., Sayles et al.,
Smith et al., Thunell et al. a,b, Turley & Mackie, Walsh,
Wassmann et al.

1995: Bodungen et al., Buck & Newton, Buesseler et al., Deuser
et al., Heiskanen, Heiskanen & Leppänen, Honjo et al.,
Lampitt et al., Landry et al., Luo et al., Riebesell et al., Turley
& Mackie, van der Wal et al.

1996: Andreassen et al., Bacon et al., Dymond & Collier,
Etcheber et al., Fischer et al., Jickells et al., Karl & Lukas, Karl
et al., Keck & Wassmann, Kiørboe et al., Michaels & Knap,
Murray et al., Osinga et al., Pilskaln et al., Reigstad &
Wassmann, Rivkin et al., Smith et al., Witte

1997: Berelson et al., Christian et al., Conte, Curry & Ostermann,
Diercks & Asper, Dortch et al., Duineveld et al., Emerson et al.,
François & Bacon, Hansell et al. a,b, Honjo, Honjo & Weller,
Karl et al., Koning et al., Lampitt & Antia, Lundsgaard &
Olesen, Rodier & Le Borgne, Roman & Gauzens, Thunell,
Valdes et al., Wakeham et al.

1998: Andreassen & Wassmann, Baldwin et al., Beaulieu &
Smith, Bode et al., Carroll et al., Conte et al., Druffel et al.,
Dunbar et al., Heiskanen et al., Lazzari et al., Lee et al., Shaw
et al., Sherrell et al., Silver et al. a,b, Smith & Druffel, Smith et
al., Steinberg et al., Thunell a,b

1999: Altabet et al., Antia et al., Asper & Smith, Beaufort &
Heussner, Bishop et al., Boyd et al., Cailliau et al., Charette et
al., Danovaro et al., Druffel & Robison, Heussner et al., Honjo
et al., Noji et al. a,b, Peña et al., Pfannkuche et al.,
Radakovitch & Heussner, Scharek et al., Smith & Kaufmann,
Thibault et al., Urban-Rich et al., Viitasalo et al., Wassmann et
al., Wong et al., Wu et al.

2000: Alleman et al., Andruleit, Broerse et al. a,b, Collier et al.,
Conan & Brummer, Danovaro et al. a,b,c, Duineveld et al.,
Fischer et al., Gardner et al., Giraudeau et al., Goericke et al.,
González et al. a,b, Gust & Kozerski, Gyldenfeldt et al., Haidar
et al., Hebbeln, Hebbeln et al., Honjo et al., Kemp et al.,
Kincaid et al., Lampitt et al., Loh & Bauer, Prahl et al., Reigstad
et al., Rixen et al., N. Romero et al., O. E. Romero et al., Roy et
al., Sempéré et al., Stavrakakis et al., Sumida et al., Thunell et
al., Waite et al., Waniek et al., Wassmann et al., Young &
Ziveri, Ziveri & Thunell, Ziveri et al., Zonneveld & Brummer

2001: Antia et al., Bauerfeind et al., Benitez-Nelson et al., Chris-
tiansen et al., Conte et al., Dadou et al., Gowing et al., Hamm
et al., Harada et al., Harris et al., Hedges et al., Herman et al.,
Hernes et al., Hidaka et al., King & Howard, McCave et al.,
Müller & Fischer, Nodder & Northcote, Nodder & Waite, Ole-
sen, Passow et al., Prahl et al., Romero et al., Scholten et al.,
Smith et al., Steinberg et al., Wollast & Chou, Zeldis

Table 1. Publications from marine studies with sediment traps, particle interceptor traps and large-volume filtration systems
appearing since the review of Turner & Ferrante (1979)
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The relative importance of zooplankton fecal pellets
in sedimentary flux and water-column recycling
depends on various factors. These include fecal pellet
sinking rates, chemical and particulate contents
(including pollutants), fate of fecal pellets in terms of
microbial decomposition or coprophagy and organisms
producing (and therefore sizes of) fecal pellets, and the
possible importance of zooplankton fecal pellets in
oceans of the geological past. These will be reviewed
before addressing the variable contribution of zoo-
plankton fecal pellets to the sedimentary flux in the
present-day ocean and the emerging view that much
of the sedimentary flux in the ocean is due to marine
snow and direct sedimentation of phytoplankton
blooms.

Fecal pellet sinking rates

Fecal pellets sink rapidly. All published sinking rates
for fecal pellets reviewed by Turner & Ferrante (1979)
were for fecal pellets of unknown origin or those
produced by copepods or euphausiids. These rates
ranged from <10 to typically hundreds of meters per
day. Subsequent sinking rate data for fecal pellets of
various other animals (Table 2) considerably broaden
the range of sinking rates.

Fecal pellets of salps and pteropods generally sink
from hundreds to thousands of meters per day,
whereas less dense, more flaky pellets of doliolids
(Bruland & Silver 1981, Madin 1982, Deibel 1990) or

discarded houses and fecal pellets of the appendi-
cularian Oikopleura dioica (Gorsky et al. 1984) sink
only tens to hundreds of meters per day.

The high rates of sinking of fecal pellets from salps
and pteropods appear related to the larger volumes of
these pellets. Due to the widespread abundance of
salps and pteropods in oceanic waters, the high
organic content of their fecal pellets (Bruland & Silver
1981, Madin 1982) and the rapid defecation rates of
salps (Madin 1982), fecal pellets of these gelatinous
zooplankters may contribute disproportionately to the
vertical flux to the benthos.

A mass occurrence of salps was recorded by Wiebe
et al. (1979) in the northwest Atlantic. Salpa aspera
performed diel vertical migrations over distances of
800 m, resulting in evacuation of 85 to 90% of the
zooplankton biomass from the upper 500 m during
daylight. Since salps feed upon small particles in the
epipelagic, such a migration would have removed
massive amounts of primary production to depth. Salp
fecal pellet production and mortality during this event
were estimated to contribute over 100% of the daily
energy requirements of the deep-sea benthos. Other
mass occurrences of salps that produced episodic fecal
pellet fluxes in the benthos were recorded by Bath-
mann (1988), Morris et al. (1988), Pfannkuche & Lochte
(1993), and Perissinotto & Pakhomov (1998).

Variations in consumer diets can affect sinking rates
of resulting fecal pellets. Small et al. (1979) reported
that natural copepod fecal pellets sank at higher and
more variable rates than those produced on laboratory

phytoplankton diets. This was pre-
sumably due to variations in fecal
pellet contents and densities, since
pellets produced from diets of cul-
tured phytoplankton mixed with sedi-
ment sank faster than those produced
on phytoplankton diets alone. Small et
al. (1979) recommended against extra-
polating measurements of sinking
rates made on pellets produced on
laboratory diets to those of fecal pel-
lets produced on natural diets. For
natural fecal pellets of both small
copepods and the large copepod Ano-
malocera patersoni, collected under
calm sea conditions, there was an
increase in sinking rates with in-
creases in fecal pellet volumes, but
there was no such relation for fecal
pellets collected in rough seas. Bien-
fang (1980) found no relationship
between fecal pellet sinking rates and
volumes for pellets of the copepod
Calanus finmarchicus produced on

60

Particles Sinking rate Source
(m d–1)

Fecal pellets of:
Copepods 5–220 Smayda (1971), Turner (1977),

Honjo & Roman (1978), 
Paffenhöfer & Knowles (1979), Small et al.
(1979), Bienfang (1980), Yoon et al. (2001)

Euphausiids 16–862 Fowler & Small (1972), Youngbluth et al.
(1989), Yoon et al. (2001)

Doliolids 41–504 Bruland & Silver (1981), Deibel (1990)
Appendicularians 25–166 Gorsky et al. (1984)
Chaetognaths 27–1313 Dilling & Alldredge (1983)
Pteropods 120–1800 Bruland & Silver (1981), Yoon et al. (2001)
Heteropods 120–646 Yoon et al. (2001)
Salps 43–2700 Madin (1982), Yoon et al. (2001)

Marine snow 16–368 Alldredge (1979), Shanks & Trent (1980),
Silver & Alldredge (1981), Taguchi (1982b),
Gorsky et al. (1984), Asper (1987),
Alldredge & Gotschalk (1988)

Phytodetritus 100–150 Billett et al. (1983), Lampitt (1985)

Table 2. Sinking rates of zooplankton fecal pellets, marine snow and
phytodetritus
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diets of diatoms versus flagellates but found that the
fecal pellets produced on the diatom diets sank signif-
icantly faster. Bienfang (1980) suggested that this
difference was due to higher densities of pellets con-
taining remains of diatom frustules. Komar et al. (1981)
concluded that a modified version of the Stokes equa-
tion gave a reasonable approximation of measured
rates of Small et al. (1979) for sinking rates of cylindri-
cal fecal pellets of copepods and euphausiids, and that
most variations in sinking rates of such fecal pellets
were due to diet-related pellet densities. Indeed,
euphausiid fecal pellets in the Antarctic were larger
and sank faster when produced on diets dominated by
diatoms than on non-diatom phytoplankton (Cadée et
al. 1992, González 1992a). Deibel (1990) discovered
that doliolid fecal pellets produced on diets of natural
particulates did not sink but that pellets produced on
diets of microflagellate, dinoflagellate and diatom
cultures sank at rates of 59 to 405 m d–1. Dilling &
Alldredge (1993) concluded that while chaetognath
fecal pellets were large (approximately 1 to 4 mm
long), due to their contents (copepod parts) pellet
density was low, and with sinking rates 5 to 10 times
slower than those of comparably sized herbivores such
as salps and doliolids. Urban et al. (1993a) reported
that densities of fecal pellets of a larvacean and a
copepod varied with season, depending on types of
phytoplankton ingested and the extent to which
remains were compacted in pellets. Frangoulis et al.
(2001) found that sinking rates of copepod fecal pellets
decreased from 100 to 70 m d–1 during the transition
from diatom- to Phaeocystis-dominated spring blooms,
and suggested that the lower sinking rates were due to
decreases in pellet density and volume when feeding
on Phaeocystis sp.

Sinking rates of copepod fecal pellets vary with
pellet size, and pellet size varies with food concentra-
tion, food composition and ingestion rate. Dagg &
Walser (1986) found that pellet size increased with
increasing food concentration up to chlorophyll levels
of 3 µg l–1, above which size remained constant. Below
this level, ingestion and defecation were balanced so
that copepod guts did not fill and fecal pellet size was
smaller, but above this level, copepod guts did fill, pro-
ducing fecal pellets of maximum size. Dagg & Walser
(1986) concluded that fecal pellets produced by cope-
pods under low food conditions would likely sink at
lower rates than pellets produced by the same cope-
pods at higher food levels. Ayukai & Nishizawa (1986)
also reported that pellet sizes were smaller at lower
food concentrations and that the ratio of defecated
volume to ingested volume was higher with a dino-
flagellate than a diatom diet. Tsuda & Nemoto (1990)
found that ingestion rates, fecal pellet production rates
and fecal pellet size increased with increasing food

concentrations. Feinberg & Dam (1998) reported that
various characteristics (length, width, density, calcu-
lated sinking rate) of fecal pellets of the copepod
Acartia tonsa were significantly different with differ-
ent laboratory diets of diatoms, photosynthetic and
heterotrophic flagellates, dinoflagellates and ciliates.
Sinking rates of fecal pellets from other copepods vary
with food conditions (Butler & Dam 1994) and size of
the fecal pellet producer (Harris 1994). Rates of sinking
of salp fecal pellets can vary with the decomposition
state of the pellets (Yoon et al. 1996). Dam & Feinberg
(2001) found significant relationships between fecal
pellet sinking rate and weight of fecal pellet producers,
and between fecal pellet sinking rate and volume.

Silver & Bruland (1981) and Bruland & Silver (1981)
concluded that diets of salps and pteropods in the
California Current differed considerably, and that this
would affect the vertical chemical fluxes resulting from
their fecal pellets. Salps fed mainly upon small phyto-
plankton, so when coccolithophorids were abundant,
their fecal pellets presumably contributed to enhanced
calcite flux. Pteropods in the same area fed primarily
upon larger phytoplankton, especially diatoms, so their
fecal pellets would be expected to facilitate enhanced
silicate flux.

In an exaggerated example of the effects of ingested
mineral particles on fecal pellet sinking rates, Taghon
et al. (1984) and Komar & Taghon (1985) found that
fecal pellets of a deposit-feeding polychaete were
large (up to 9.7 mm long), had high density due to
ingested sediment (1.086 to 1.282 g cm–3) and high
sinking rates (2618 to 5132 m d–1). Similar processes
might also apply to planktonic organisms, since abun-
dant fine-grained lithogenic particles were filtered by
Oikopleura dioica (Dagg et al. 1996) and by copepods
(Turner 1984a,b, 1987) in the plume of the Mississippi
River.

Fecal pellet contents

Contents of fecal pellets have long been used to
examine the diets of the zooplankters that produce
them (Fig. 1). These analyses include studies of cope-
pods (Turner 1977, 1978, 1984a,b,c, 1985, 1986a,b,
1987, 1991, Turner & Anderson 1983, Bathmann et al.
1990a,b, Voss 1991, Urban et al. 1992, 1993b, González
et al. 1994a,b), euphausiids grazing on epontic (under-
ice) algae (O’Brien 1987, González et al. 1994a) and
protists (Buck & Newton 1995).

Levels of photosynthetic pigments and phaeopig-
ments, and other chemicals such as carbon, nitrogen,
phosphorus and radiolabeled compounds in fecal
pellets have also been used to examine patterns of
zooplankton feeding and fecal pellet decomposition
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(Honjo & Roman 1978, Turner 1979, Welschmeyer et al.
1984, Downs & Lorenzen 1985, Welschmeyer & Loren-
zen 1985, Vernet & Lorenzen 1986, Bathmann &
Liebezeit 1987, Dagg & Walser 1987, Morales 1987,
Head 1988, Head et al. 1988, Sapozhnikov & Pasternak
1988, Dagg et al. 1989, Nelson 1989, Ayukai 1990,
González & Biddanda 1990, Roy & Poulet 1990, Head
1992a,b, Head & Harris 1992, 1996, Lee & Fisher 1992,
Head & Horne 1993, Otsuki et al. 1993, Pfannkuche &
Lochte 1993, Anderson 1994, Butler & Dam 1994, Har-
ris 1994, Landry et al. 1994a,b, Madin et al. 1997,
Urban-Rich et al. 1998, McLeroy-Etheridge &
McManus 1999, Thibault et al. 1999, Goericke et al.
2000, Hayashi et al. 2001). Altabet & Small (1990)
found that nitrogen isotope ratios in zooplankton fecal
pellets indicated that grazers were important modifiers
of nitrogen contents of particles sinking in the sea.
Copepod fecal pellets can also be highly concentrated
sources of dimethylsulfoniopropionate (DMSP) (Kwint
et al. 1996, Tang 2001) and may be important in the
vertical flux of this compound (Daly & DiTullio 1996).

The feeding ecology of various zooplankters has
been related to rates of production, size, volume and
enzymatic activity of fecal pellets (Clarke et al. 1988,
Butler & Dam 1994, Harris 1994, Paffenhöfer 1994,
Bochdansky et al. 1995, Dagg 1995, Carlotti et al. 1997,
Nejstgaard et al. 1997, Rey et al. 1999, Thibault et al.
1999, Huskin et al. 2000), and sizes of fecal pellets have
been examined in relation to sizes of fecal pellet pro-
ducers (Uye & Kaname 1994).

There have been several reports of intact or even live
phytoplankton cells in fecal pellets. Johnson et al.
(1982) found intact Synechococcus cells in Calanus sp.
fecal pellets, and ultrastructural studies revealed that
the cells were apparently undigested. Pfannkuche &
Lochte (1993) found apparently undigested chloro-
phyll-bearing cyanobacteria cells in salp feces. Con-
versely, Silver & Bruland (1981) observed many cocco-

lithophorid and diatom cells in fecal pellets
of salps and pteropods that appeared intact
based upon scanning electron microscopy of
external morphology, but transmission elec-
tron microscopy revealed that internal pro-
toplasm had been digested. Cells that
appear to be identical to the aphotic zone
‘olive-green cells’ described by Fournier
(1970, 1971) have been found in fecal pellets
of salps and pteropods by Silver & Bruland
(1981) and bathypelagic marine snow (Sil-
ver & Alldredge 1981). These were sug-
gested to be waste products from either
partial degradation of algae ingested by
herbivores, cells that had undergone auto-
lysis, egested vacuolar residues of proto-
zoans or fecal pellets of microzooplankton,

which had been eaten by consumers, evacuated in
fecal pellets and then after subsequent fecal pellet
sinking and degradation were released back into the
water column at depth. The finding of photosyntheti-
cally competent phytoplankton cells from 1000 m
prompted Platt et al. (1983) to suggest that the cells
had reached depth after surviving grazer gut passage
and fecal pellet sinking and decomposition.

The existence of viable phytoplankton cells in
euphausiid fecal pellets was confirmed by Fowler &
Fisher (1983). Fecal pellets from sediment traps as well
as those produced by euphausiids grazing on labora-
tory diets contained live cells, mostly diatoms. Viability
was confirmed by growth of cells both in fecal pellets
and subsequently in unenriched seawater. In some
cases, cells had survived in natural fecal pellets for up
to 10 d.

Bathmann & Liebezeit (1986) found that many fecal
pellets produced by copepods during a declining
spring phytoplankton bloom in the Baltic contained
high levels of chlorophyll a (chl a) but low levels of
phaeopigments, indicating that pellets contained undi-
gested cells. Scanning electron microscopy of these
fecal pellets confirmed that they contained abundant
intact diatom cells. As the bloom became terminated,
chl a and intact diatoms in copepod fecal pellets pro-
gressively declined.

The lipid, amino acid and fatty acid contents of fecal
pellets of copepods, euphausiids and other consumers
can differ with changes in the levels of these com-
pounds in ingested food or with fecal pellet age
(Tanoue et al. 1982, Prahl et al. 1984a,b, 1985, Tanoue
1985a,b, Corner et al. 1986, Matsueda et al. 1986,
Neale et al. 1986, Poulet et al. 1986, Tanoue & Hara
1986, Bradshaw et al. 1989, Wakeham & Lee 1989, Roy
& Poulet 1990, Claustre et al. 1992, Marty et al. 1994,
Yoon et al. 1996, Hamm et al. 2001). Fecal pellets of the
pelagic crab Pleuroncodes planipes accounted for a

62

Fig. 1. Fecal pellet of the copepod Acartia tonsa produced while feeding
on the toxic diatom Pseudo-nitzschia multiseries. Photograph at left shows
entire fecal pellet; line scale = 10 µm. Photograph at right is high magnifi-

cation, showing fragments of broken diatoms; scale bar = 1 µm
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significant portion of the lipids collected in sediment
traps deployed over the upper 1500 m in the equatorial
North Pacific (Wakeham & Canuel 1986).

Fecal pellets and pollutants

Anthropogenic compounds showing elevated con-
centrations in fecal pellets or other sedimented materi-
als (in addition to references in Turner & Ferrante
[1979] for trace metals, radionuclides, chlorinated
hydrocarbons and petroleum hydrocarbons) include
polycyclic aromatic hydrocarbons (Prahl & Carpenter
1979), chlorinated hydrocarbons (Osterroht & Smeta-
cek 1980, Sleeter & Butler 1982, Burns et al. 1985,
Fowler et al. 1986, Harding 1986, Knap et al. 1986),
petroleum hydrocarbons (Burns et al. 1985, Broman et
al. 1987), fly-ash particles from coal-burning power
plants (Deuser et al. 1983b), metals (Cowen & Bruland
1985, Krishnaswami et al. 1985, Noriki et al. 1985a,b,
Fisher et al. 1991, Reinfelder & Fisher 1991, Nott &
Nicolaidou 1996), transuranics (Fowler et al. 1983,
Gorsky et al. 1984, Reinfelder & Fisher 1991, Rein-
felder et al. 1993, Lee & Fisher 1994) and radionuclides
(Fowler et al. 1983, 1987, Livingston & Anderson 1983,
Bacon et al. 1985, Krishnaswami et al. 1985, Harada &
Tsunogai 1986, Buessler et al. 1987, Kempe & Nies
1987, Kempe et al. 1987, Fisher et al. 1988, Kusakabe
et al. 1988, Moore & Dymond 1988, Reinfelder et al.
1993).

The Chernobyl nuclear power plant accident on
26 April 1986 provided a serendipitous ‘tracer experi-
ment’ for measuring vertical flux of radionuclides into
the deep sea at 3 distant European locations (Bacon
1987). Fowler et al. (1987) recorded peaks of the sig-
nature radionuclides 141Ce and 144Ce from Chernobyl
in zooplankton fecal pellets in time-series sediment
traps at 200 m in the Mediterranean off Corsica from
8 to 15 May, within a few days of delivery of these
radionuclides to the surface by a pulse of rainfall on 4
to 5 May. The sediment traps had been deployed
prior to the Chernobyl event, and their particulates
were primarily (>70%) composed of zooplankton
fecal pellets in the size range of those produced by
copepods. Kempe & Nies (1987) and Kempe et al.
(1987) also recorded Chernobyl radionuclides within
10 d in sediment traps already in place at 222 m
depth in the North Sea off Norway. This was during
the time of the spring diatom bloom. Chernobyl
radionuclides were also recorded in sediment traps
deployed in the Black Sea prior to the accident
(Buessler et al. 1987, Kempe et al. 1987). Radionu-
clides arrived at a depth of 1071 m over the course of
the 2 months following the accident, during the time
of the normal summer bloom of the coccolithophorid

Emiliania huxleyi. Kusakabe et al. (1988) also
recorded Chernobyl radionuclides at depths of 110 to
780 m in June and July of 1986 in the North Pacific
and Bering Sea, indicating long-distance transport
over several months. Levels of Chernobyl radionu-
clides in sediment traps in the Black Sea continued to
decline throughout the fall and winter of 1986, and
by a year after the explosion were undetectable
(Buesseler et al. 1990). The Chernobyl episode clearly
showed that biologically mediated vertical flux mech-
anisms in the sea can deliver pollutants to depth with
previously unappreciated rapidity.

Fate of fecal pellets

‘Utilization of fecal particles would appear to be a race
between microorganisms and coprophages, both work-
ing against the effects of gravity on the falling particles.’ 

Pomeroy et al. (1984) p. 434

There is increasing evidence that many zooplankton
fecal pellets are recycled in the water column through
microbial decomposition and coprophagy. Urban-Rich
et al. (1999) compared potential fecal pellet carbon
flux, determined from fecal pellet production rates,
fecal pellet carbon and zooplankton abundance, with
actual levels of carbon flux due to zooplankton fecal
pellets recovered from sediment traps off Norway (see
Wassmann et al. 1999). Potential fecal pellet carbon
flux was estimated to be 2 to as much as >100% of the
measured fecal pellet carbon flux in the upper 200 m,
but recovery of fecal pellets in sediment traps, which
amounted to only 5 to 35% of total carbon flux, sug-
gested that substantial recycling of fecal pellets was
occurring in surface waters. Using a similar approach,
Viitasalo et al. (1999) calculated that >99% of potential
copepod fecal pellet production in the Baltic was recy-
cled in the upper water column, although this varied
somewhat with season, location, composition of the
zooplankton community and turbulence. Much of the
loss of fecal pellet carbon in the water column appears
to be through release of dissolved organic carbon from
fecal pellets during their descent (Noji et al. 1999a,
Urban-Rich 1999, 2001). Also, despite extensive
biodegradation (>98%), the bulk organic composition
of sinking particulate matter appears to undergo mini-
mal changes (Hedges et al. 2001), suggesting that
organic matter in sinking particles such as fecal pellets
might be protected from degradation by inorganic
components.

Some zooplankton fecal pellets become repackaged
through coprophagy by other zooplankters. Gowing &
Silver (1986) have found recognizable zooplankton
fecal pellets in the guts of deep-sea copepods. Paffen-
höfer & Knowles (1979) and Ayukai (1986) have shown
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that adult copepods feed upon fecal pellets of con-
specific juveniles, often at higher filtering rates than on
co-occurring diatoms. Neal et al. (1986) fed fecal
pellets of barnacle nauplii to copepods. Green et al.
(1992) found that nauplii of the large copepod Calanus
helgolandicus ingested fecal pellets of nauplii of the
smaller copepod Pseudocalanus elongatus.

Lampitt et al. (1991) reported that copepods break
up their own fecal pellets while ingesting only a small
portion of the pellets, and named this behavior
‘coprorhexy.’ These authors speculated that copepods
strip the peritrophic membrane off fecal pellets and
consume the membrane in order to ingest attached
microbiota. Indeed, Youngbluth (1982) observed mysis
larvae of pelagic shrimps feeding on microbes, phyto-
plankton, protozoans and metazoans attached to the
peritrophic membrane of their own fecal material, as
well as fecal pellets of other zooplankters.

Noji et al. (1991) distinguished 3 types of behavior by
copepods when feeding on fecal pellets, all of which
can potentially modify particle-size spectra of particle
assemblages. Coprorhexy, or the fragmentation of
fecal pellets, resulted in decreasing the number of
large particles and increasing the abundance of
smaller particles. At the same time, the smallest size
fractions of particles had an increase in particle sizes,
due to addition of larger particles from broken fecal
pellets, which were larger than the small natural parti-
cles most abundant in the water. Coprophagy, or
ingestion of fecal pellets, removes large particles.
‘Coprochaly’ was defined as disruption of peritrophic
membranes of fecal pellets by copepods, resulting in
partial dispersal of fecal pellet contents into the water,
thereby increasing the relative abundance of small
particles. Noji et al. (1991) suggested that disruption of
fecal pellets by these processes would increase resi-
dence times of fecal materials by converting large par-
ticles to smaller ones with lower sinking rates. This
could also enhance microbial degradation of feces by
increasing microbial substrate by converting larger
particles to smaller ones. Additional effects might
include enhancement of diffusion processes oxygenat-
ing the interior of fecal particles (Alldredge & Cohen
1987), as well as leaching of dissolved organics and
inorganics from such particles to the surrounding
water (Jumars et al. 1989). All of these processes would
be expected to convert large fast-sinking particles to
smaller suspended ones, thereby increasing the re-
cycling of fecal pellets in the upper layers of the sea,
while retarding their transport to depth.

The copepod Oithona similis has been shown to
ingest fecal pellets of several calanoid copepods,
whereas the calanoids did not appreciably ingest their
own fecal pellets (González & Smetacek 1994,
González et al. 1994b). This led González & Smetacek

(1994) to speculate that specialization for coprophagy
by O. similis may contribute to the ubiquitous abun-
dance of this species in the ocean. Coprophagy of fecal
pellets produced by calanoid copepods by cyclopoids
(mainly Oithona spp.) was also indicated by results
from mesocosm studies of Svensen & Nejstgaard
(2001).

There is also indirect evidence for zooplankton
reprocessing of fecal pellets by coprophagy at depth.
Honjo (1978) collected ‘green’ and ‘red’ fecal pellets in
sediment traps in the Sargasso Sea, which had differ-
ent composition. The green pellets contained abun-
dant phytoplankton pigments, coccoliths and diatom
fragments, and appeared to have resulted from zoo-
plankton grazing in the surface layer, with rapid sedi-
mentation to depth. The red pellets, however, con-
tained clay particles and few phytoplankton remains,
and were collected only in the deepest sediment traps.
Honjo (1978) concluded that red pellets had been pro-
duced at depth by deep-water zooplankters reprocess-
ing fecal pellets and other particulates sinking from
above. Similarly, Urrère & Knauer (1981) found an
increased fecal pellet flux in sediment traps at 1500 m,
relative to traps at 500 m, and Conte et al. (2001) found
increased lithogenic fluxes between 500 and 3200 m
compared to depths closer to the surface. Both of these
increases in fluxes at depth suggested repackaging of
fecal pellets through coprophagy by mesopelagic and
bathypelagic zooplankton.

Fecal pellets are subject to microbial decomposition,
and questions have been raised as to whether fecal
pellets contain bacteria primarily on surfaces or inter-
nally, and whether pellet decomposition is primarily
from the ‘inside out’ or from the ‘outside in’.

There is increasing evidence for decomposition of
fecal pellets by internal bacteria. Gowing & Silver
(1983) confirmed that natural fecal pellets collected
from either sediment traps or freshly produced by
pelagic crabs contained bacteria primarily inside the
pellets, and that pellet surfaces had few attached bac-
teria. This was in contrast to observations of labora-
tory-produced fecal pellets, which were reported to
have few internal bacteria (Honjo & Roman 1978). Fur-
ther, Gowing & Silver (1983) discovered that with
aging in the laboratory, fecal pellets that initially had
few surface bacteria developed a ‘surface microbial
lawn’ over time during laboratory incubations, similar
to observations of Turner (1979). Gowing & Silver
(1983) concluded that extensive rapid bacterial colo-
nization of fecal pellet surfaces was likely an artifact of
laboratory conditions, and that decomposition of most
fecal pellets in the sea initiates with internal bacteria
that are either enteric or ingested, or both. Since guts
of copepods have been reported to contain an exten-
sive microbial flora (Ogawa 1977, Sochard et al. 1979),
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Gowing & Silver (1983) concluded that fecal pellet
decomposition in the sea is primarily from the inside
out. However, Nott et al. (1985) reported that bacteria
were present in copepod fecal pellets only during peri-
ods of feeding, and no bacteria were found in empty
guts of non-feeding copepods, suggesting that bacteria
in fecal pellets were ingested along with food and not
derived from resident populations in the gut. Lawrence
et al. (1993) concluded that bacteria were abundant in
copepod fecal pellets produced from feeding on food
that contained bacteria, but bacteria were absent from
fecal pellets produced from feeding on axenic food.
Bacteria within copepod fecal pellets grew during
incubation, suggesting that some had survived gut
passage, and high aminopeptidase activity in fecal
pellets suggested that internal bacteria participated in
pellet degradation. Nagasawa & Nemoto (1988) found
bacteria in the guts, within the interior of fecal pellets
and colonizing the outside of fecal pellets of marine
amphipods and copepods. In some cases, bacteria
within copepod fecal pellets were more abundant
than, and taxonomically different from, bacterial
assemblages in surrounding waters (Delille & Razouls
1994). Hansen & Bech (1996) observed that copepod
fecal pellets became colonized by bacteria from the
surrounding water but could not dismiss the possibility
that some bacteria were from inside fecal pellets or
copepod guts.

Bianchi et al. (1992) identified both methanogenic
(obligate anaerobes) and nitrifying (areobic) bacteria in
natural fecal pellets from sediment traps and copepods,
and suggested that the bacteria originated from cope-
pod guts, most likely as ingested species for nitrifiers
and enteric for methanogens. Karl & Tilbrook (1994)
concluded that most methane in the upper layers of the
Pacific is associated with sinking particles, and sug-
gested that methane leaking from settling fecal pellets
into the water column may explain the typical supersat-
uration of highly oxygenated surface waters with
methane that forms only under anaerobic conditions.

Raghukumar & Raghukumar (1999) discovered that
salp fecal pellets in the Arabian Sea contained abun-
dant bacteria and unicellular, heterotrophic fungoid
protists known as thraustochytrids. In addition to inter-
nal thraustochytrids, during experimental incubations,
fecal pellets became colonized by thraustochytrids that
were in the water column. Isolates of these protists
from fecal pellets grew during incubations designed to
simulate temperature and pressure conditions of the
deep sea. This suggests that thraustochytrids survive
gut passage through salps and continue to decompose
salp fecal pellets during their rapid descent to the
abyss.

Some fecal pellets have been shown to become
rapidly colonized by bacteria and other microorgan-

isms from seawater. Jacobsen & Azam (1984) found
that within 24 h of egestion copepod fecal pellets had
bacteria from the surrounding seawater covering
nearly a third of the fecal pellet surface area. Sinking
of pellets through a column of natural seawater
increased the rate of initial colonization compared to
fecal pellets lying on the bottoms of laboratory contain-
ers. Growth rates of bacteria associated with fecal
pellets and those of bacteria free in the water were not
significantly different, and mineralization of fecal
pellet carbon amounted to no more than 1% d–1.
Jacobsen & Azam (1984) concluded that bacteria colo-
nizing fecal pellets may not be a major remineraliza-
tion pathway in the epipelagic.

Guidi & Tito de Morais (1983) observed that both
fresh and aged fecal pellets of an ascidian were
ingested by an epibenthic amphipod and that aged
fecal pellets became progressively colonized by bacte-
ria, which increased pellet organic carbon content.
Peduzzi & Herndl (1986) also confirmed that fecal pel-
lets of a gastropod became quickly colonized by bacte-
ria within 12 h, after which bacterial abundance on
pellets declined.

There is a microbial succession of colonizers of fecal
pellets. Pomeroy et al. (1984) observed that bacteria
originating in feces of salps and doliolids developed
rapidly within the first 24 h, causing increases in respi-
ration, net uptake of phosphate, loss of total primary
amines and little change in ammonium. After 24 h
protozoans invaded the feces and rapidly consumed
most bacteria. After about 2 d fecal pellet microbial
activity had largely ceased. Pomeroy et al. (1984) con-
cluded that the efficiency of conversion of tunicate
feces to microbial biomass was 10 to 20% and that
fecal pellets were rapidly biodegraded by their own
internal microbial community. In contrast, Caron et al.
(1989) found that fecal pellets of oceanic salps
remained intact over 10 d periods of experimental
decomposition, despite becoming colonized by abun-
dant bacteria and protozoans. Silver et al. (1984) also
found that detrital particles collected in sediment traps
had abundant ciliates, which were suggested to be
endemics within consumer guts, rather than colonists
from the surrounding water.

Fecal pellet degradation rates may depend on the
diets producing the fecal pellets. Hansen et al. (1996)
fed the copepod Acartia tonsa unialgal diets designed
to simulate the boreal seasonal succession of phyto-
plankton dominated by diatoms in spring, nanoflagel-
lates in summer and dinoflagellates in fall. Fecal pel-
lets produced on diatom diets degraded significantly
more slowly than those produced on nanoflagellate or
dinoflagellate diets. Bacteria decreased over time on
diatom-based pellets but increased on nanoflagellate-
and dinoflagellate-based diets. Hansen et al. (1996)
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concluded that flagellate-based fecal pellets produced
during summer and fall periods are most likely
degraded in the epipelagic, whereas diatom-based
fecal pellets are more likely to sediment to the benthos
in spring.

Smetacek (1980a) also found evidence for consider-
able reprocessing of copepod fecal pellets in Kiel
Bight. The contribution of calanoid copepod fecal pel-
lets to particulate carbon in detritus averaged <10%
from April through September and <5% for the rest of
the year. Periods of lowest fecal pellet contribution
were those of highest zooplankton abundance and vice
versa. Calculated residence times for fecal pellets in
the 20 m deep water column were only a few hours in
summer. Smetacek concluded that reprocessing of
fecal pellets by zooplankton coprophagy and microbial
degradation was high in summer and that this con-
served essential nutrients in the water column.

Hofmann et al. (1981) simulated the contribution of
fecal pellets by the various stages of dominant small
copepods of the genus Paracalanus to the benthos of
the southeastern USA continental shelf. The model
indicated that nauplii produced daily averages of 50%
of total fecal pellet mass, but only 4% of pellet flux.
Adults produced daily averages of 13% of total fecal
pellet mass but only 63% of pellet flux. Because most
copepod fecal pellets were small, would sink slowly
and were presumably consumed by coprophagy or
microbially degraded in the epipelagic, the model indi-
cated that only 0.2% of the average daily primary
production reached the sea floor (35 m depth) as fecal
pellets.

Krause (1981) suggested that most fecal pellets are
biodegraded in near-surface waters and questioned
the notion that fecal pellets sink at all. During a study
of vertical distributions of fecal pellets in the North
Sea, fecal pellets were generally found above the main
thermocline, within 30 m of the surface. Most fecal
pellets appeared to be those of the copepod Calanus
finmarchicus. Even when this copepod migrated below
the thermocline, the fecal pellet maximum remained in
the uppermost layers of the water column. Krause
(p. 325) conjectured that ‘faecal pellets, probably
enriched with bacteria in the gut of the copepod,
inevitably have an anaerobic metabolism. The gas
bubbles which develop during the bacterial activity in
the faeces, at first cause a floating or even a buoyancy
of the faecal pellets. This causes them to remain in the
euphotic zone, where they can be re-cycled.’ Krause
then speculated that the high sinking rates for various
types of fecal pellets recorded from laboratory investi-
gations (references in Turner & Ferrante 1979) were
artifacts caused by such things as storage of fecal pel-
lets in cold water or ‘counting and measuring under a
warm light microscope, where the material is heated.’

He concluded that fecal pellets remain in the upper
mixed layer because they are, in fact, buoyant and do
not naturally sink. This conclusion is at odds with the
numerous studies conducted prior to his showing that
fecal pellets are collected in deep-sea sediment traps.
An alternative explanation might be that fecal pellets
sometimes remain in the upper mixed layer because it
is mixed. Indeed, Alldredge et al. (1987) observed that
large fecal pellets, probably produced by euphausiids,
had sustained residence times in the upper 20 m off
California, even though these pellets had measured
sinking rates of 18 to 170 m d–1. Alldredge et al. (1987)
attributed this accumulation of large fecal pellets in
surface waters to turbulent mixing, which retained the
pellets in the upper mixed layer. Martens & Krause
(1990) also found that most fecal pellets were at depths
above 100 m in the North Sea in summer.

Microzooplankton fecal pellets

Most studies of zooplankton fecal pellets have
focused on pellets produced by larger mesozooplank-
ters such as copepods, euphausiids and tunicates,
which have high sinking rates. However, some micro-
zooplankters such as protozoans and small metazoans
are now known to produce tiny fecal pellets, which
presumably do not sink and are likely remineralized in
the epipelagic.

Gowing & Silver (1985) discovered that small fecal
pellets from 3 to 50 µm in diameter were ubiquitous
and abundant in sediment traps and water samples
throughout the upper 2 km of the eastern tropical
Pacific. These ‘minipellets’ were thought to be wastes
of radiolarians, other protozoans and small metazoans.
Fluxes of minipellets exceeded those of larger fecal
pellets (>50 µm) by 3 orders of magnitude, and carbon
flux of minipellets was 11 to 49% that of larger pellets.
Minipellets contained intact bacteria and picoplankton
cells, some of which appeared identical to previously
described olive-green cells. Gowing & Silver (1985)
concluded that minipellet producers are major re-
processors of detritus originating in the euphotic zone
and that these organisms are important in biological
transformation of organic matter in the sea.

Nöthig & Bodungen (1989) observed that small fecal
pellets (30 to 150 µm) were abundant in the water
column and in sediment traps in the Weddell Sea.
These pellets were suggested to originate from proto-
zoan grazers such as ciliates, heterotrophic dinoflagel-
lates, radiolarians and foraminiferans. They consti-
tuted 36% of the total sedimented feces volume in
sediment traps. The majority of fecal pellets remaining
in sediment traps were larger (150 to 300 µm) spherical
fecal pellets, suggested to be those of small metazoans.
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Other studies have confirmed that protozoans pro-
duce minipellets. Stoecker (1984) found that tintinnids
and aloricate ciliates produce small fecal aggregates
(18 × 32 µm), which overlap in size with cells of their
dinoflagellate prey (16 × 22 µm). Buck et al. (1990) con-
firmed that a phagotrophic athecate dinoflagellate
found in Antarctic sea ice produced small fecal pellets
that averaged 30 µm in diameter and were filled with
frustules of the pennate diatom Nitzschia cylindrus.
Buck et al. (1990) suggested that the release of such
fecal pellets from melting ice into the underlying water
column may constitute a substantial portion of the flux
of organics from the euphotic zone to depth. González
(1992b) also found that minipellets (5 to 100 µm) were
abundant in the Antarctic. These minipellets contained
numerous unbroken diatom frustules and originated
from heterotrophic unarmored dinoflagellates and
phaeodarian radiolarians. Gowing et al. (2001) re-
ported that minipellets from athecate heterotrophic
dinoflagellates and ciliates were the dominant types of
fecal pellets in sediment traps at several stations in the
Ross Sea.

Dinoflagellate minipellets have also been reported
from temperate localities. Buck & Newton (1995) found
that during a spring bloom in Dabob Bay (Puget
Sound, Washington, USA) the dominant diatom Tha-
lassiosira pacifica was extensively eaten by an unar-
mored dinoflagellate of the genus Gymnodinium,
which produced abundant fecal pellets. These pellets
averaged 69 × 83 µm, were covered with a peritrophic
membrane and were packed with Thalassiosira frus-
tules, which were devoid of cytoplasm. Dinoflagellate
minipellets accounted for an average of 29% of the
total fecal pellet flux to 50 m depth. Elbrächter (1991)
showed that a variety of photosynthetic and hetero-
trophic dinoflagellates and other protists produce
minipellets.

Other studies have revealed abundance of fecal
pellets from metazoan microzooplankton. Minipellets
from copepod nauplii also contained frustules of the
diatom Nitzschia sicula during a bloom of this species
in the Adriatic (Vilicic et al. 1994), and pellets
<80 µm in the longest dimension, likely from cope-
pod nauplii, were important components of the fecal
pellet assemblage in a Norwegian fjord (Pasternak et
al. 2000).

Fish fecal pellets

The fecal pellets of fish also appear to be important
in some marine ecosystems. Fecal matter of 7 species
of mid-water fish sank at rates of hundreds to
thousands of meters per day (Robison & Bailey 1981),
and pellets of larger volumes sank faster. Due to the

high abundance of mid-water fish in many oceanic
environments and the high nutrient content of their
fecal pellets, mid-water fish fecal matter may be a
major source of organic export from the pelagic com-
munity to the benthos. Bray et al. (1981) have shown
that fish that forage during the day on pelagic zoo-
plankton and then return to shelters in a rocky reef at
night import substantial amounts of carbon to the reef
through defecation in nocturnal shelters. Fecal pellets
of reef fishes also appear important in the import of
minerals to reef communities (Geesey et al. 1984). Sim-
ilarly, Robertson (1982) showed that many coral reef
fishes are coprophagous on feces of other fish, which
can have high nutritional content (Bailey & Robertson
1982). Fecal pellets of reef fishes that prey on
cnidarians that contain zooxanthellae, themselves con-
tain live zooxanthellae, which are photosynthetically
active and capable of re-establishing symbioses with
cnidarians (Parker 1984).

Fecal matter of anchovies in the Peru upwelling
system was a major component of the downward flux
into sediment traps (Staresinic et al. 1983). Fecal frag-
ments sank at rates averaging >1 km d–1, and had high
organic carbon and nitrogen contents as well as abun-
dant diatom fragments. Due to fast sinking rates,
anchovy feces have a relatively short residence time in
the water column, and since they fall into sediments
that are primarily anoxic below the superficial layers,
fecal organic matter should remain intact before burial
in deeper sediments. Staresinic et al. (1983) speculated
that the decline in anchovy stocks off Peru in the early
1970s might have led to reduced fluxes of particulate
organic matter and that a relative increase in the con-
tribution of smaller slower-sinking particles such as
phytoplankton cells and zooplankton fecal pellets
might have contributed to the increased denitrification
recorded off coastal Peru since the decline of fish
stocks (Codispoti & Packard 1980). An alternative
hypothesis by Walsh (1981) suggested that the decline
in anchovy stocks off Peru would decrease utilization
of organic matter in the water column by anchovies,
making more organic matter available for deposition.
Either way, feeding and fecal production by anchovies
off Peru, and presumably in other coastal upwelling
systems, are potentially important processes. In fact,
Scheidegger & Krissek (1983) have suggested that
unusually fine-grained terrigenous sediments confined
to the inner continental margin off Peru are due to
fecal pelletization of these particles by zooplankton
and anchovies while feeding upon phytoplankton.
Since zooplankton and fish populations increase
together with phytoplankton during enhanced up-
welling intensity in December through April, also a
period of peak river discharge, the coincidence of max-
imum biological removal of terrigenous sediments at
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the time of their maximum input may explain why so
few terrigenous sediments are found beyond the conti-
nental margin. Scheidegger & Krissek (1983) con-
cluded that such a biological ‘filter’ or barrier to sea-
ward transport of terrigenous sediments in the
wind-driven surface layer enhanced deposition of ter-
rigenous and pelagic particulates into anoxic sedi-
ments off Peru, thereby helping to preserve the sedi-
mentary record of upwelling characterized by various
chemical and biological indicators (references in
Scheidegger & Krissek 1983).

Zooplankton fecal pellets in ancient oceans

There is paleontological evidence for zooplankton
fecal pellets. Porter & Robbins (1981) discovered what
appear to be fossil zooplankton fecal pellets in black
shales 11 to 300 million yr old that represent coastal,
epicontinental sea and lake environments. These
black shales are associated with phosphate, oil and
coal deposits. Porter & Robbins (1981) suggested that
zooplankton fecal pellets contributed to the deposition
of organic matter in anoxic basins, contributing to for-
mation of the black shale deposits. Robbins et al. (1985)
described microfossils resembling fecal pellets of
modern zooplankters in Middle Cambrian and Early
Proterozoic shale. These microfossils were in rocks that
also preserved sulfides analogous to modern anoxic
environments that preserve fecal pellets. Rocks con-
taining putative pellets were 0.53 × 109 to 1.9 × 109 yr
old. Similar rocks of Archaean age (2.68 × 109 to 3.8 ×
109 yr old) did not contain pellet-like microfossils.
Robbins et al. (1985) argued that if the Proterozoic
microfossils were fossilized fecal pellets, then they pro-
vided evidence of metazoan life and a complex food
web 1.9 × 109 yr ago, which predates macroscopic
metazoan body fossils 0.67 × 109 yr ago, animal trace
fossils 0.9 × 109 to 1.3 × 109 yr ago and fossils of uni-
cellular eukaryotic algae 1.4 × 109 yr ago.

Fecal pellets may have facilitated oxygenation of the
ocean, leading to the Cambrian ‘explosion’ of multi-
cellular life (Walter 1995, Oliwenstein 1996). G. A.
Logan et al. (1995) found that hydrocarbons extracted
from Terminal Proterozoic to Early Cambrian marine
sediments (570 to 590 million yr old) were derived
mainly from bacteria and other heterotrophs rather
than from autotrophs. They proposed that prior to the
Cambrian, slowly sinking organic matter in the sea
was repeatedly reworked by bacterial degradation,
leading to sulfate reduction and oxygen depletion in
the surface layer of the sea. High 13C:12C ratios in sed-
iments suggested long heterotrophic microbial food
webs. An abrupt decline in 13C:12C ratios at the begin-
ning of the Cambrian, coincident with evolution of the

metazoan gut, suggests that organic matter in the sea
became increasingly packaged in rapidly sinking fecal
pellets, which plummeted to depth before they could
be extensively decomposed, resulting in increases in
ocean oxygenation and allowing the Cambrian radia-
tion of multicellular animal life.

Butterfield (1997) has proposed that the advent of
metazoan guts and increased zooplankton grazing in
the sea at the Proterozoic-Cambrian interface would
have had the opposite effect from that described
above, namely a decrease in export to depth via zoo-
plankton fecal pellets. By removing phytoplankton and
packaging it as animal biomass, which stayed in the
upper water column, Butterfield suggested that zoo-
plankton grazing might have reduced carbon burial,
causing the observed drop in 13C:12C ratios at the
beginning of the Cambrian. If this were the case, then
the drop in carbon ratios would be a consequence,
rather than a cause, of the Cambrian explosion.

Kitchell (1983) and Haberyan (1985) have suggested
that if zooplankton fecal pellet sedimentation is a dom-
inant means by which phytoplankton remains reach
the seafloor and become part of the micropaleontolog-
ical fossil record, then selective feeding by the zoo-
plankton producing the fecal pellets might heavily bias
the fossil record toward phytoplankton species pre-
ferred by grazers.

The variable importance of fecal pellets in 
sedimentary flux

Numerous studies have shown that the contribution
of zooplankton feces to sedimentary flux can be
substantial (Table 3). Bishop et al. (1977) estimated
that in the upper 400 m of the equatorial Atlantic, zoo-
plankton fecal pellets and fecal matter constituted only
4% of the total suspended mass concentration but
accounted for 99% of the vertical mass flux through
the upper 388 m. Urrère & Knauer (1981) reported that
fluxes of recognizable zooplankton fecal pellets varied
with depth, accounting for 10 to 19% of total carbon
fluxes for near-surface waters (35 to 150 m), declining
to 9.7% at 500 m and 3.4% at 1500 m. Fowler et al.
(1991) found that fecal pellet carbon fluxes increased
with depth, accounting for 25, 29 and 33% of total
particulate carbon fluxes at 50, 150 and 250 m, respec-
tively. Graf (1989) concluded that a pulse of fecal pel-
lets from the copepod Calanus finmarchicus accounted
for 92% of the total carbon settling to the deep North
Atlantic at the end of a spring bloom in May. Fecal pel-
lets constituted averages of 11 to 37% but up to 66% of
the vertical flux of particulate organic carbon (POC)
over the upper 200 m off Norway (Wassmann et al.
1999). Roy et al. (2000) found that zooplankton fecal
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pellets accounted for 3 to >100% of total POC flux over
the upper 150 m in the Gulf of St. Lawrence but that
during June, the period of maximum fecal pellet car-
bon flux, all values were >66%. The average contribu-
tion of zooplankton fecal pellets to POC flux at 50 m in
this study was 50% over the annual cycle. Other stud-
ies show that euphausiid and copepod fecal pellets can
be the dominant components of flux during major
blooms of the prymnesiophyte Phaeocystis pouchetii
(Lutter et al. 1989, Riebesell et al. 1995, Hamm et al.
2001) and coccolithophorids such as Emiliania huxleyi
(van der Wal et al. 1995, Fischer et al. 1996).

Small et al. (1983) investigated the proportions of ver-
tical particulate flux made up of fecal pellets and
amounts of primary production converted by zooplank-
ton to fecal pellets and dissolved excretions in the trop-
ical Pacific. Both small (<300 µm) and large (300 to
500 µm) zooplankton (not counting euphausiids, salps
and red crabs) constituted <2% of daily primary carbon
and nitrogen production into fecal pellets. If all such fe-

cal pellets sank below 100 m and into the oxygen
minimum zone without being eaten or decom-
posed, then upward nutrient flux from below
100 m would only have to be equivalent to a loss
of 2% or less to maintain daily production. That
would mean that ‘new production’ (Dugdale &
Goering 1967, Eppley & Peterson 1979) would
have to be only 2% of total production, and 98%
could be recycled production, if the only losses
were due to sedimentation of fecal pellets from
small and large zooplankton (mostly copepods).
Considering that there are other fecal pellet pro-
ducers and that some small fecal pellets are recy-
cled in the epipelagic and do not sink below
100 m, whereas other small pellets are exported
to depth via attachment to marine snow, Small et
al. (1983) estimated that total fecal pellet removal
of carbon and nitrogen from surface waters
would not exceed 10% of daily primary produc-
tion and would more closely approximate 5%.
The percentages of vertical flux measured at
120 m composed of various types of fecal pellets
were much greater. Small et al. (1983) estimated
that 41% of the carbon flux to this depth came
from fecal pellets of small and large zooplankton,
and that 21% came from the red crab Pleuron-
codes planipes. Small et al. (1983) concluded that
after adding contributions from all other organ-
isms that were not accounted for in these cate-
gories, ‘almost all’ of the carbon flux to 120 m
could result from fecal pellet flux.

Other studies have shown the proportion of
vertical fluxes attributable to fecal pellets is
comparatively low. Despite collection of large
numbers of zooplankton fecal pellets in sediment

traps at various depths, fecal pellets contributed aver-
ages of only <5 to 10% of the vertical fluxes of organic,
carbonate, silicate and lithogenic materials at several
oceanic deep-water sites (Pilskaln & Honjo 1987).
However, since fecal pellets had elevated C:N ratios
and high organic content, they may have been an im-
portant source of organic carbon for deep-sea benthos.
Fecal pellet fluxes accounted for only 2 to 4% and 5 to
25% of the total organic carbon fluxes in summer and
winter, respectively, to a depth of 74 m in Funka Bay,
Hokkaido (Maita et al. 1988). Particulate flux to 390 m
in the Panama Basin was dominated by marine snow,
and fecal pellet flux was insignificant (Asper 1987).
Taylor (1989) found that fecal pellet flux was only 6%
of total particulate carbon flux in the upper 200 m in
the North Pacific central gyre, and Ayukai & Hattori
(1992) reported that fecal pellet carbon flux was only
0.4 to 1.7% of total POC flux to 100 m off Japan. Lane
et al. (1994) estimated that copepod fecal pellet flux in
the upper 42 m over the Virginia continental shelf
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Depth (m) Fecal pellets (%) Source

High
1430 92 Graf (1989)
200 Up to 66 Wassmann et al. (1999)
150 3 to >100 Roy et al. (2000)
120 ‘Almost all’ Small et al. (1983)
400 99% of total mass Bishop et al. (1977)
200 92.8 (sum of all sizes) Wassmann et al. (2000)
1500 84.0 (sum of all sizes) Wassmann et al. (2000)

Low
389 to 5068 5 to 10 Pilskaln & Honjo (1987)
74 2 to 25 Maita et al. (1988)
390 ‘Insignificant’ Asper (1987)
200 6 Taylor (1989)
100 0.4 to 1.7 Ayukai & Hattori (1992)
42 <1 Lane et al. (1994)
500 Mean 20, range 10 to 30 Passow et al. (2001)

Moderate to variable
100 10 to 19 Urrère & Knauer (1981)
500 10 Urrère & Knauer (1981)
1500 3 Urrère & Knauer (1981)
50 25 Fowler et al. (1991)
150 29 Fowler et al. (1991)
250 33 Fowler et al. (1991)
2300 3 to 35 Carroll et al. (1998)
1000 1.6 to 62.0 Miquel et al. (1994)
860 18 to 199 Small & Ellis (1992)
500 10 to 30% Bauerfeind et al. (2001)
300 Pre-El Niño 5 to 10 González et al. (2000a)

El Niño 24 to 38 González et al. (2000a)
Post-El Niño 3 to 11 González et al. (2000a)

200 5 to 48 Gowing et al. (2001),
Asper & Smith (1999)

Table 3. Zooplankton fecal pellet contribution to total particulate
organic carbon flux
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constituted <1% of total particulate carbon collected in
sediment traps and 0.3% of particulate carbon in the
water column. The contribution of zooplankton feces to
particulate carbon flux at 80, 200 and 1000 m depths in
the Mediterranean was variable over the annual cycle
(1.6 to 62%) (Miquel et al. 1994). Similarly, Carroll et
al. (1998) found that fecal pellet flux over 2300 m in the
Mediterranean varied with depth and season, and in
terms of types of fecal pellets collected, and that the
proportion of total carbon flux attributable to fecal pel-
lets averaged 18%, ranging from 3 to 35%. Lunds-
gaard & Olesen (1997) concluded that most copepod
fecal pellets produced in the Kattegat sank out of the
surface layer but that, due to the large component of
vertical flux from sources other than copepod fecal pel-
lets, copepod fecal pellet contribution to flux was in-
significant. Roman & Gauzens (1997) calculated that
the proportion of export flux due to copepod fecal pel-
lets in the equatorial Pacific was small, suggesting that
most copepod fecal pellets produced in the euphotic
zone decomposed or were ingested by other zooplank-
ton. Landry et al. (1995) calculated that mesozooplank-
ton (>200 µm) grazing in the Southern California Bight
seasonally accounted for 16 to 44% of phytoplankton
growth but that only 23 to 32% of this grazing was lost
rapidly enough from the euphotic zone to be recovered
as fecal pellets in sediment traps down to 100 m. Zeldis
(2001) concluded that <4% of the POC in sediment
traps was due to copepod fecal pellets during an iron
enrichment experiment in the Southern Ocean.

The relative contribution of zooplankton fecal pellets
to vertical carbon flux can depend on the depth inter-
val being considered. In the euphotic zone of an oligo-
trophic oceanic station in the sub-tropical North
Pacific, there was a 2-layered system (Small et al. 1987)
where, in the upper 40 m, there was higher primary
production, low chlorophyll concentration and low
zooplankton biomass, and the zooplankton produced
mainly small fecal pellets that were recycled. In the
lower layer from 40 to 100 m depth, there was low pri-
mary productivity but high chlorophyll and zooplank-
ton, and many larger zooplankton fecal pellets. There
was no fecal pellet flux into sediment traps at 30 m but
at 120 m, fecal pellet flux was 30% of total carbon flux.
Small et al. (1987) concluded that zooplankton fecal
pellets are coupled more to carbon flux out of the bot-
tom layers of oligotrophic euphotic zones than to the
carbon flux of unlayered eutrophic euphotic zones. In
contrast, Altabet (1989a) concluded that in the Sar-
gasso Sea, the recycling of nutrients in the upper half
of the euphotic zone was less efficient than that in the
euphotic zone as a whole.

The relative contribution of fecal pellets to vertical
flux also depends on epipelagic community structure.
Michaels & Silver (1988) simulated the size distribu-

tions of pelagic producers and trophic positions of
consumers, and their effects on the composition and
amounts of sinking fluxes. Picoplankton were the dom-
inant producers in the model, but they contributed
little to downward fluxes due to the large number of
trophic steps between picoplankton and producers of
fecal pellets. Net phytoplankton, though less abundant
than smaller phytoplankton, were important contribu-
tors to the vertical flux because of the comparatively
few trophic steps between them and their consumers,
which produce large sinking fecal pellets, and because
blooms of netplankton can sink to the benthos directly.
The vertical flux varied strongly with community com-
position of consumers producing fecal pellets. Gener-
alist grazers, which ingest a broad size spectrum of
prey from pico- and nanoplankton, were major
exporters of fecal pellets to depth. Such generalists
that form swarms, including salps and doliolids, may
have important episodic impacts on the overall aver-
age export from the epipelagic.

The contribution of fecal pellet carbon to total partic-
ulate carbon flux out of the euphotic zone can also vary
with size and relative carnivorous versus herbivorous
feeding patterns of the zooplankton community. Small
& Ellis (1992) found that the percentage of total carbon
flux attributable to fecal pellet flux from larger zoo-
plankton (>500 µm) in the Santa Monica Basin off
California also varied with season, from 10% in Octo-
ber to 172% in May. Assuming no carnivory and
adding in fecal pellet flux from smaller (200 to 500 µm)
zooplankton, much of which may have been recycled
in the epipelagic, percentages of total carbon flux rep-
resented by fecal pellet flux ranged from 18% in Janu-
ary and February to 199% in May.

The relative contribution of fecal pellets to total
particulate flux can vary in relation to El Niño condi-
tions (González et al. 2000a,b). In January 1997, prior
to the 1997-1998 El Niño in the northern Humboldt
Current off Chile, zooplankton fecal pellets accounted
for means of 5 to 10% of the total POC in sediment
traps over the upper 300 m depth. This was during a
period when the zooplankton assemblage was domi-
nated by copepods. In July 1997, during the onset of El
Niño, the deepening of the thermocline led to a reduc-
tion of nutrient input by upwelling, and chlorophyll
levels were low. The zooplankton during this period
included abundant salps and euphausiids, and zoo-
plankton feces, primarily fecal strings of euphausiids,
accounted for means of 24 to 38% of total sediment-
trap POC. In post-El Niño conditions in January 1998,
when copepods were again dominant, zooplankton
fecal pellet carbon had declined to 2.7 to 11.3% of total
sediment-trap carbon.

The relative contributions of zooplankton fecal
pellets compared to ungrazed phytoplankton can also
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vary in relation to upwelling seasons and copepod life
cycles. Smith (2001) concluded that zooplankton graz-
ing in the Arabian Sea could control vertical flux vari-
ations. During June at the onset of upwelling, large
copepods in the epipelagic grazed extensively on
diatoms, preventing diatom blooms. The largest verti-
cal flux events were recorded near the end of the
upwelling season in August and September, after the
dominant copepods had migrated to depth to begin
diapause, when ungrazed diatoms constituted the
dominant component of sediment-trap contents
(Passow et al. 1993).

The apparent importance of fecal pellet flux to depth
may also depend on benthic conditions. Pilskaln (1991)
found that zooplankton fecal pellets were extremely
abundant in anoxic surface sediments of the Black Sea.
These fecal pellets were packed with coccolithophorid
remains and contributed substantially to the white
coccolith-rich sediments. Pilskaln concluded that
abundant fecal pellets in these anoxic sediments sub-
stantiated the claim that the widespread lack of fecal
pellets in sediments deposited under aerobic condi-
tions was due to remineralization by benthic microbes
and consumers.

Part of the variability in estimates of the importance
of fecal pellets in sedimentary flux may be due to
patchiness of fecal pellets and the animals producing
them. Using a submersible, Youngbluth et al. (1989)
observed abundant fecal pellets (50 to 325 m–3) in situ
in the Gulf of Maine and canyons south of Georges
Bank, where pellets were accumulated at night in 5 to
24 m thick layers in the pycnocline. Positions of these
layers in the water column varied with time of day. The
pellets were produced by the vertically migrating
euphausiids Meganyctiphanes norvegica, which were
present in enormous aggregations (up to 104 m–3), usu-
ally near the seabed. These pellets sank rapidly
(means of 200 to 211 ± 32 m d–1) and were estimated to
transport large amounts of organic matter (means of 7
to 12 mg C m–2 d–1) to the bottom. Youngbluth et al.
(1989) concluded that amounts of vertical flux due to
zooplankton fecal pellets can vary considerably with
hydrography and zooplankton behavior.

MARINE SNOW

‘When I think of the floor of the deep sea…I see always
the steady, unremitting, downward drift of materials from
above, flake upon flake, layer upon layer…the most stu-
pendous “snowfall” the earth has ever seen.’ 

Rachael Carson (1951) p. 74

‘Marine snow’ refers to organic aggregates >500 µm
in size (Alldredge & Silver 1988). Such aggregates are
abundant and ubiquitous in the ocean, and comprise

many types of particles, originating from a variety of
sources. As reviewed by Alldredge & Silver (1988), the
study of marine snow began with in situ observations
and collections from submersibles, primarily by Japan-
ese researchers beginning in the 1950s (Tsujita 1952,
Suzuki & Kato 1953, Nishizawa et al. 1954, Inoue et al.
1955, Nishizawa 1966, 1969, Kajihara 1971). Field
studies by primarily North American scientists in the
1960s and 1970s focused on samples named ‘organic
aggregates’ collected from water bottles (Riley 1963,
1970, Johannes 1967, Gordon 1970, Wiebe & Pomeroy
1972, Wangersky 1974). Other studies, primarily in the
laboratory, addressed the role of bubbles, turbulence
and bacteria in the conversion of dissolved organic
material to particulate organics (Baylor et al. 1962, Sut-
cliffe et al. 1963, Menzel 1966, Sheldon et al. 1967,
Batoosingh et al. 1969, Johnson 1976, Johnson &
Cooke 1980, Kranck & Milligan 1980, Biddanda 1985),
and whether such particles supported nutrition of fil-
ter-feeding animals (Baylor & Sutcliffe 1963). Since the
late 1970s and 1980s, there has been a coalescence of
in situ study using SCUBA and submersibles (Silver et
al. 1978, Trent et al. 1978) with laboratory and ship-
board field studies (reviewed below).

Marine snow and other macroscopic organic aggre-
gates may originate from a variety of sources. These
include abandoned larvacean houses, diatom and
dinoflagellate flocs, fecal aggregates and aggregates
of miscellaneous detritus (Alldredge & Gotschalk 1990,
Alldredge et al. 1998). Marine snow particles contain
sticky microbially produced exopolymers that have
high efficiencies of aggregation (Alldredge & McGilli-
vary 1991, Stolzenbach 1993, Stolzenbach & Elimelech
1994). Large marine snow macroflocs form under con-
ditions of high phytoplankton biomass and low wind
speeds, and dissipate with wind-induced turbulence
(Riebesell 1992). Marine snow also accumulates at
water-column density discontinuities (MacIntyre et al.
1995).

Marine snow becomes enriched by a variety of
attached planktonic organisms and other particles.
These include bacteria, photosynthetic picoplankton,
diatoms, diatom resting spores, dinoflagellates, other
primary producers, protozoans, small detrital particles,
minerals and fecal pellets (Silver et al. 1978, 1998a,
Trent et al. 1978, Silver & Alldredge 1981, Knauer et al.
1982, Prézelin & Alldredge 1983, Biddanda 1985, 1986,
1988, Alldredge et al. 1986, 1998, Beers et al. 1986,
Caron et al. 1986, Davoll & Silver 1986, Silver et al.
1986, Taylor et al. 1986, Amy et al. 1987, Eisma 1987,
Biddanda & Pomeroy 1988, Herndl 1988, Herndl &
Peduzzi 1988, Davoll & Youngbluth 1990, Simon et al.
1990, Turley 1991, Bochdansky & Herndl 1992a,b,
Kaltenböck & Herndl 1992, Müller-Niklas & Herndl
1992, Smith et al. 1992, Buck & Chavez 1994, Kilps et
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al. 1994, Steinberg et al. 1994, Turley & Mackie 1994,
Artolozaga et al. 1997, Holloway & Cowen 1997,
Leppard et al. 1997, Noji et al. 1997, Rath et al. 1998,
Ploug & Grossart 2000). Various zooplankters also
appear to be associated with marine snow (Alldredge
1972, 1976, Shanks & Edmonson 1990, Steinberg et al.
1994, 1997, Walters & Shanks 1996, Green & Dagg
1997, Shanks & del Carmen 1997, Shanks & Walters
1997, Kiørboe 2000).

Marine snow aggregates provide small-scale patchi-
ness of larger particles that may be nutritionally
enhanced parcels when consumed by larger pelagic
organisms. Microscale chemical patches of oxygen and
pH around marine snow particles and fecal pellets
were confirmed by Alldredge & Cohen (1987). Ploug et
al. (1999) found that marine snow aggregates were net
heterotrophic communities that were hotspots of
microbial respiration in the water column. Alldredge
(2000) found that dissolved organic carbon associated
with marine snow can be up to 31% of the total organic
carbon in aggregates and suggested that previous
measurements of sedimenting carbon that only
included particulate carbon may have underestimated
the total vertical flux of organic carbon.

Macroscopic aggregates (>1 mm) are abundant in
epipelagic as well as mesopelagic and bathypelagic
waters (Silver & Alldredge 1981, Honjo et al. 1984,
Davoll & Youngbluth 1990, Gardner & Walsh 1990,
Pilskaln et al. 1998, Silver et al. 1998b). In Monterey
Bay, California, phytoplankton-containing aggregates
constituted about half the aggregates in the upper 40 to
250 m layers but declined to only 5% of aggregates at
400 m, prompting Silver et al. (1998b) to suggest that
many sub-euphotic zone aggregates were derived from
sources not tied to phytoplankton production cycles.

Aggregates are resistant to disaggregation (All-
dredge et al. 1990) and are typically chemically
enriched with higher concentrations of organic carbon,
nitrogen, protein, carbohydrate, lipid, phaeopigments,
chlorophyll and particulate weight than of those in the
surrounding water column (Alldredge 1979, 1998), as
well as with high levels of trace metals (Hebel et al.
1986).

Concentrations of attached bacteria, phytoplankton
and heterotrophic protozoan cells (many of which
appear alive), zooplankton, fecal pellets, other bio-
genic debris, and organic carbon on marine snow and
other large particles can exceed those suspended in
the surrounding water by as much as 2 to 4 orders of
magnitude (Fellows et al. 1981, Silver & Alldredge
1981, Caron et al. 1982, Bochdansky & Herndl 1992a,b,
Lampitt et al. 1993b, Steinberg et al. 1994, Turley &
Mackie 1994, Ploug et al. 1999, Waite et al. 2000).
Levels of primary productivity and chlorophyll of algae
attached to marine snow can exceed those of the sur-

rounding water column by up to 2 orders of magnitude
(Alldredge & Cox 1982), but only marine snow of
phytoplankton origin contributes significantly to pri-
mary production in surface waters (Alldredge &
Gotschalk 1990). For marine snow in the mesopelagic
zone, however, even though bacteria attached to
marine snow were >100 times more abundant than in
surrounding seawater, since marine snow was rare
(0.4 to 5.0 aggregates m–3), the contribution made by
bacteria attached to marine snow to total mesopelagic
zone bacterial production was insignificant, ranging
from 0.01 to 0.39% (Alldredge & Youngbluth 1985).
Plumes of dissolved organics leaking from sinking
aggregates may attract bacteria from the water column
to attach to marine snow (Kiørboe & Jackson 2001).
There are also suggestions that bacteria attached to
marine snow and other organic aggregates appear to
be taxonomically different from those dominating
water-column assemblages (DeLong et al. 1993).

Marine snow and other sinking particles may con-
tain enhanced levels of viruses (Proctor & Fuhrman
1991). Large virus-like particles have been found in
bulk sediment-trap material, in zooplankton guts and
fecal pellets, and in phaeodarian radiolarians, which
may have acquired viruses while feeding on sinking or
suspended particulates (Gowing 1993).

Depending on their sizes, shapes and densities,
marine snow particles may sink tens to hundreds of
meters per day, which is either faster or slower than
many types of zooplankton fecal pellets (Shanks &
Trent 1980, Silver & Alldredge 1981, Taguchi 1982b,
Gorsky et al. 1984, Asper 1987, Alldredge & Gotschalk
1988, Diercks & Asper 1997). Since marine snow parti-
cles ‘scavenge’ smaller particles including fecal pellets
from the surrounding water as they sink (Hill & Nowell
1990), adherence to marine snow particles may either
enhance or retard sinking rates of fecal pellets (All-
dredge 1979). A model by Jackson (2001) suggests that
sinking rates of marine snow particles may be en-
hanced if high-density fecal pellets become embedded
in the marine snow. Rapidly sinking mucous aggre-
gates from web-feeding euthecosomatous pteropods
scavenge picoplankton-sized particles, thereby greatly
accelerating their sinking rates (Noji et al. 1997), and
Waite et al. (2000) observed massive sedimentation of
picoplankton embedded in organic aggregates in the
South Pacific.

Some forms of marine snow are fecal pellets.
Pomeroy & Deibel (1980) found that up to 4 d old fecal
ribbons from pelagic tunicates (salps and doliolids)
resembled the flocculent organic aggregates colonized
with microorganisms that are typically described as
‘marine snow’ in productive parts of the ocean. Older
particles of feces resembled the uncolonized aggre-
gates that appear to be ubiquitous throughout the
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ocean. There was a microbial succession on fresh
aggregates that initially contained phytoplankton
remains but that subsequently developed populations
of larger bacteria cells and later protozoans such as
flagellates and ciliates. The microbial populations
appeared to originate both from cells contained in the
feces and from others colonizing from the surrounding
water column. However, most bacteria cells in the
feces were larger 1 to 3 µm rods and cocci, which were
different from the <1 µm minibacteria in the seawater.

Marine snow is a food source for pelagic organisms.
Lampitt et al. (1993a) found that marine snow particles
in the northeast Atlantic exhibited diel variability in
abundance and depth, and suggested that this was due
to ingestion by vertically migrating mesopelagic fauna.
Lampitt et al. (1993b) confirmed from both gut contents
produced on natural diets and feeding experiments
conducted at sea that several species of ostracods,
copepods and the micronektonic amphipod Themisto
compressa consumed marine snow. This implied that a
food-web shortcut by which picoplankters attached to
marine snow, which are too small to be efficiently con-
sumed by mesozooplankton and micronekton, can
become part of the diets of these upper-trophic-level
consumers when they eat marine snow. Amphipod
fecal pellets contained such picoplankters, and gut
passage times for vertically migratory amphipods were
long enough to allow marine snow consumed at night
in the epipelagic to be eliminated at mesopelagic day-
time depths. Lampitt et al. (1993b) calculated that such
‘gut flux’ for the amphipod population might constitute
as much as 2% of the vertical flux measured simulta-
neously in sediment traps. Dagg (1993) suggested from
both energy-budget imbalances and gut contents that
the large (7 to 9 mm long) copepod Neocalanus crista-
tus in the sub-Arctic Pacific must be ingesting large
detrital particles such as marine snow. There are other
reports or suggestions that zooplankton ingest various
types of marine snow, mainly originating from plank-
tonic tunicates (Alldredge 1972, 1976, Hamner et al.
1975, Alldredge & Madin 1982, Ohtsuka & Kubo 1991).
Also, Lawrence et al. (1993) found that copepods
ingested and assimilated bacteria attached to detrital
particles such as marine snow, again suggesting a
shortcut between the microbial loop and the grazing
food chain. Laboratory investigations have confirmed
that marine snow is consumed by copepods and
euphausiids (Bochdansky & Herndl 1992a, Dilling et
al. 1998), and fish (Larson & Shanks 1996). Graham et
al. (2000) attributed a nighttime reduction in amounts
of marine snow in near-surface waters off California to
consumption or disruption by euphausiids and large
copepods that had migrated upward into the epi-
pelagic. Indeed, Dilling & Alldredge (2000) and Gold-
thwait et al. (2001) found that euphausiids caused

fragmentation of marine snow particles by the activity
of swimming.

A particular type of macroscopic aggregate is the
mucilage phenomenon in the Adriatic Sea (reviewed
by Stachowitsch et al. 1990, Herndl 1992). These
events have been known for centuries and can cause
beach fouling on a massive scale (mare sporco or ‘dirty
sea’ in Italian), and benthic anoxia. The mucilagenous
accumulations are thought to be initially produced by
diatoms (Heissenberger et al. 1996, Leppard et al.
1996, Najdek 1996). The intermittent timing and inter-
annual variability of mucilage outbreaks makes pin-
pointing a cause difficult.

Alldredge et al. (1993) and Kiørboe & Hansen (1993)
described previously unknown forms of organic aggre-
gates in the sea known as transparent exopolymer
particles (TEP). TEP are small, transparent and
extremely abundant, and are formed from dissolved
exopolymers exuded by phytoplankton and bacteria.
TEP range in the longest dimension from 3 to hundreds
of micrometers, and in abundance from 28 to 500 ml–1

in coastal California waters. TEP are sticky (B. E.
Logan et al. 1995), have high levels of attached bacte-
ria, and are major agents in the aggregation of diatoms
and in the formation of marine snow. Alldredge et al.
(1993) suggested that TEP might transform dissolved
organic matter into particulates by a rapid abiotic path-
way, in addition to remineralization by microbes. The
abundance, size and extent of bacterial colonization of
TEP are quite variable (Passow & Alldredge 1994, Mari
& Kiørboe 1996), and TEP can be important in the floc-
culation and mass sinking of diatom blooms (Passow et
al. 1994, Alldredge et al. 1995, Passow & Alldredge
1995, Waite et al. 1997, Ploug & Jørgensen 1999,
Ramaiah et al. 2001) and blooms of Phaeocystis spp.
(Hong et al. 1997). However, Engel & Schartau (1999)
found that diatom aggregates without TEP sank faster
than those with TEP, because TEP reduced the density
of aggregates. TEP appear to form from dissolved pre-
cursor material (Passow 2000), and phytoplankton
appear to be the most important source of TEP,
although bacteria may possibly enhance phytoplank-
ton production of TEP (Passow et al. 2001). Schuster &
Herndl (1995) concluded that turbulence was more
important than bacteria in the water column in the for-
mation of TEP particles in the Adriatic. Krembs &
Engel (2001) found that TEP were abundant in Arctic
sea ice. Colloidal TEP can be eaten by protozoans
(Shimeta 1993, Tranvik et al. 1993) and larvaceans
(Flood et al. 1992). Passow & Alldredge (1999) showed
that TEP-nanoplankton clusters were readily grazed
by euphausiids, and that this process shortcircuited the
microbial loop by making cells normally too small to be
efficiently grazed available to euphausiids after in-
corporation into TEP clusters.
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Long & Azam (1996) found abundant proteinaceous
fibrous particles in the sea that were 3 to 13 times more
abundant than TEP, with up to 2 orders of magnitude
greater area. Bacteria had colonized 20 to 40% of these
particles. Long & Azam (1996) suggested that these
proteinaceous particles may serve as nitrogen sources
for bacteria and other organisms.

An important summary of both theoretical and
empirical studies in the emerging fields of TEP, and the
roles of aggregation and stickiness of phytoplankton
and other particles in vertical flux was presented in a
special issue of ‘Deep-Sea Research’ (Part II, Vol. 42,
No. 1) entitled ‘Aggregation in marine systems’ (All-
dredge & Jackson 1995, and papers referenced
therein).

PHYTOPLANKTON SEDIMENTATION

‘…Huxley was certainly wrong in his interpretation of
[Bathybius haeckeli] as a new and primitive life form, but
his error was not quite so foolish as many of his contem-
poraries and subsequent commentators have suggested.
Perhaps later generations of oceanographers are much
more open to criticism for not recognizing a phenomenon
of such potential significance [i.e., sedimented phyto-
plankton blooms] for so long!’ 

Rice (1983) p. 179

Phytoplankton were not considered to be a major
component of the sedimentary flux until recently. This
was because laboratory studies of sinking rates of
phytoplankton cells gave sinking rates typically <1 to
tens of m d–1 (Smayda 1970, 1971, Smayda & Bienfang
1983, and references therein). However, field studies
over the last 2 decades revealed that some ungrazed
phytoplankton blooms can sink directly to the benthos
at unexpectedly rapid rates.

Bloom sedimentation was first shown for shallow
coastal waters (20 m depth) of Kiel Bight (Smetacek et
al. 1978, 1984, Smetacek & Hendrikson 1979, Smeta-
cek 1980a,b, 1984). Peaks in phytoplankton sedimen-
tation occurred during the spring diatom bloom in
March and April. The low C:chl a ratios of sedimented
materials indicated that it was primarily fresh phyto-
plankton. Phytoplankton sedimentation declined from
May through August during a period when the phyto-
plankton was dominated by dinoflagellates and
microflagellates, and zooplankton were abundant. The
high C:chl a and C:N ratios of sedimented materials
during summer indicated that it was highly degraded,
due to decomposition under warmer temperatures or
zooplankton grazing, or both. Sedimentation increased
again during fall diatom and dinoflagellate blooms,
when low C:chl a ratios again indicated that sedi-
mented material was primarily phytoplankton instead
of detritus. The highest rates of sedimentation were

during winter, when most material collected in sedi-
ment traps was resuspended bottom sediments, with
high C:chl a ratios, that had been mixed into the water
column by turbulence from frequent storms.

There are other recent reports of episodic mass sedi-
mentation of phytoplankton blooms in coastal waters.
Bodungen et al. (1981) similarly reported that a spring
bloom in the Baltic, comprising mainly the diatom
Skeletonema costatum, sank to the benthos. This
occurred under calm sea conditions, prior to seasonal
thermal stratification. Calculated sinking rates for the
S. costatum bloom were 30 to 50 m d–1. Cadée (1985)
found that macroaggregates with intact cells of the
coccolithophorid Emiliana huxleyi embedded in mu-
coid materials were collected in floating sediment
traps in the epipelagic, but below the euphotic zone
(40 to 70 m depth), during a spring bloom in the North
Sea, just after the maximum abundance of this cocco-
lithophorid in the surface layer. Sedimentation of sea-
sonal blooms has also been observed in other near-
shore waters off northern Europe (Peinert et al. 1982,
Davies & Payne 1984, Cadée 1986, Nicolaisen & Chris-
tensen 1986, Noji et al. 1986, Peinert 1986, Skjoldal &
Wassmann 1986, Rey & Skjoldal 1987, Kempe &
Jennerjahn 1988, Lutter et al. 1989, Wassmann et al.
1991, Passow & Wassmann 1994, Trimmer et al. 1999,
Reigstad et al. 2000, Olesen 2001), the Canadian Arctic
(Atkinson & Wacasey 1987, Hsiao 1987, Tremblay et al.
1989, Riebesell 1993), British Columbia (Sancetta &
Calvert 1988, Sancetta 1989a), California (Alldredge &
Gotschalk 1989, Gotschalk & Alldredge 1989, Logan &
Alldredge 1989), Washington (Kiørboe et al. 1996),
Alaska (Laws et al. 1988, Hansell et al. 1989, Waite et
al. 1992), Narragansett Bay (Riebesell 1989) and
Antarctica (Bathmann et al. 1991, Karl et al. 1991,
Leventer 1991, Rutgers van der Loeff & Berger 1991,
Gowing et al. 2001). Walsh (1983) has speculated that
mass sedimentation of phytoplankton blooms to conti-
nental shelf sediments may represent substantial
global sinks of carbon and nitrogen, and a simulation
by Boyd & Newton (1999) suggests that sinking of
large ungrazed phytoplankton cells, probably diatoms,
may be a major determinant of the flux of particulate
organics in several ocean habitats.

Smetacek (1985) has argued that rapid mass sinking
of diatom blooms may be a transition from growing to
resting stages in the life histories of these algae.
Smetacek suggested that sinking is of survival value in
diatom species that survive long periods in cold and
dark, but not warm nutrient-depleted surface waters.
Formation of mucous diatom flocs would accelerate
sinking rates of diatoms to depth, away from surface
strata with high population levels of zooplankton,
during or immediately prior to seasons of maximum
grazing pressure. Smetacek (1985) also suggested that
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diatom sinking may ‘seed’ coastal sediments with
diatom resting spores, contributing to persistence of
diatom species in an area by providing seed popula-
tions for the next growing season. Bodungen et al.
(1986) found evidence for such a scenario in the
Antarctic Peninsula region. Formation of diatom
aggregates has also been shown to enhance sedimen-
tation in the North Sea (Riebesell 1991a,b) and in the
Antarctic (Riebesell et al. 1991).

Mass sedimentation of diatoms appears to have been
occurring for tens of thousands to millions of years.
Jordan et al. (1991) invoked flocculation as a mecha-
nism explaining a 3 cm thick layer of well-preserved
diatom sediments from the upper Pleistocene in the
Antarctic. Sancetta et al. (1992) summarized data on
sinking of rhizosolenid diatoms and concluded that this
is a common occurrence now, as well as in the past
(Sancetta 1993). Schubert et al. (1998) used organic
chemical biomarkers in sediments to reveal that the
relative proportions of diatoms and dinoflagellates
remained similar but that combined phytoplankton
abundances tracked changes in ocean productivity in
the Arabian Sea over the last 200 000 yr.

Sapropels (sediment layers with high concentrations
of organic carbon) from the Pliocene to the Pleistocene
age (5 million to 10 000 yr old) from the eastern
Mediterranean are composed primarily of rhizosolenid
diatoms (Kemp et al. 1999, Sancetta 1999). These
appear to have formed dense mats during summer,
which would be expected to be an oligotrophic period.
However, such diatoms have endosymbiotic nitrogen-
fixing cyanobacteria, which might have enabled them
to survive during stratified nitrogen-depleted condi-
tions. Mass sedimentation of these diatoms appears to
have contributed to the widespread coincident hypoxia
or anoxia recorded in these sediments.

Seasonal mass sedimentation of large diatoms is still
a major feature in modern seas (Kemp et al. 2000,
Smetacek 2000, Trull & Armand 2001). Examination of
laminated sediments and diatom fluxes from sediment
traps from the Gulf of California and the Mediter-
ranean led Kemp et al. (2000) to propose that where
there is a strong seasonal thermocline and nutricline,
several taxa of ‘giant’ (>50 µm in longest dimension)
diatoms may be able to generate substantial produc-
tion at depth during the summer. Included would be
several species of the genera Rhizosolenia, other rhi-
zosolenids such as Proboscia and Pseudosolenia, and
species of Stephanopyxis, Thalassiothrix and Coscin-
odiscus. Some large diatoms such as these appear to be
adapted to low light (Goldman 1993) and able to verti-
cally migrate between the euphotic zone and nutrient-
rich deeper layers by controlling buoyancy (Villareal et
al. 1993, 1996, 1999). Their large size and robust the-
cae may also make them harder for grazers to eat; thus,

they may live longer, allowing a biomass buildup
(Smetacek 2000). If these giant diatoms persist at depth
throughout the stratified summer period, autumn
mixing may cause a ‘fall dump’ of these diatoms, which
can produce as much, if not more, export production of
diatoms as the typical spring bloom. This might prompt
re-evaluation of the common assumption that dia-
tomaceous sediments are paleontological evidence of
upwelling because they might have been deposited
under oligotrophic conditions instead.

Kiørboe et al. (1998) found that diatom aggregates in
the Benguela Current upwelling were extremely
sticky and contributed little to vertical flux. This was
because aggregates became colonized by the hetero-
trophic dinoflagellate Noctiluca scintillans (Tiselius &
Kiørboe 1998), which not only grazed on the diatom
aggregates but also imparted buoyancy to them so that
they did not sink.

Svensen et al. (2001) tested the hypotheses that
increased levels of silicate would favor diatom growth,
with consequent increases in sedimentation, and that
increased turbulence would increase diatom sedimen-
tation through increased aggregation. Neither hypo-
thesis was upheld. While increased silicate did
enhance diatom growth, this did not increase phyto-
plankton sedimentation, relative to communities
dominated by flagellates, and increased turbulence
had no effects on sedimentation of diatom- versus
flagellate-dominated assemblages.

There can be a rapid benthic response to organic
input from sinking phytoplankton blooms in shallow
water. Graf et al. (1982, 1984) found that there was
immediate stimulation of benthic microbial activity
following sedimentation of a spring phytoplankton
bloom in Kiel Bight. The bivalve Macoma baltica, a
macrobenthic sediment surface feeder, commenced
accumulation of lipid and glycogen reserves immedi-
ately following bloom sedimentation. Responses of
other macrobenthic animals were less clear. It
appeared that the organic material contributed by this
bloom was remineralized within 2 to 3 wk, so its over-
all contribution to the annual benthic energy budget
was only 15 to 25%. During sedimentation of subse-
quent phytoplankton blooms in Kiel Bight, Graf et al.
(1983) found that an autumn phytoplankton bloom was
not consumed rapidly by microbial processes, but a
spring bloom was consumed within 5 to 6 wk. A simu-
lation of the responses to the fall bloom agreed with
field observations (Graf 1987). Supply of food from the
surface layer to the benthos, as deduced from sediment
samples, appears to be an important factor affecting
macrobenthic community structure, biomass and
metabolism on the continental shelf in the Bering and
Chukchi Seas (Graebmeier et al. 1988, 1989, Graeb-
meier & McRoy 1989). Meiofauna gave varied re-
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sponses to sedimenting phytodetritus, in that it was
extensively ingested by harpacticoid copepods but not
by other meiofauna (Rudnick 1989) or that there were
no apparent relationships between interannual varia-
tions in meiofaunal abundance and supply of sedi-
menting phytodetritus in Auke Bay, Alaska (Fleeger et
al. 1989). In the Cretan Sea (northeast Mediterranean),
seasonal deposition of phytodetritus stimulated ben-
thic responses by bacteria (Danovaro et al. 2000c) and
meiofauna (Danovaro et al. 2000a). Deposition from
phytoplankton blooms can also alter sediment nutrient
regimes (Conley & Johnstone 1995) and production of
dimethylsulfide (DMS) (Osinga et al. 1996).

Phytoplankton blooms can also sink directly into
deep water (reviewed by Rice et al. 1986). Deuser &
Ross (1980) and Deuser et al. (1981a) found that the
flux of organic carbon and particles to the deep
(3200 m) Sargasso Sea near Bermuda appeared closely
tied to the annual cycle of phytoplankton primary pro-
duction in surface waters. This signal persisted despite
interannual variations (Deuser 1986, 1987, Deuser et
al. 1990, 1995). This suggested that there was an effi-
cient mechanism for rapid export (<60 d) of even fine
particles from the surface to abyssal depths.

Billett et al. (1983) confirmed the rapid seasonal
sedimentation of intact phytoplankton cells to depths
of 1 to 4 km in the deep sea off Scotland. Phyto-
plankton was part of an amorphous organic matrix of
fluffy detritus, which time-lapse photography revealed
arrived on the sea floor within time intervals of a few
hours during the spring-summer bloom period of April
to July. Surface sediment samples revealed that the
detrital matrix contained intact phytoplankton assem-
blages resembling those of spring and summer blooms
in the overlying near-surface waters during periods
immediately prior to sedimentation events. Spring
blooms were dominated by diatoms, whereas summer
blooms contained proportionately more coccolitho-
phorids. Such rapid sedimentation implied sinking to
depths of 2000 m over periods of as little as 2 to 3 wk,
or sinking rates of 100 to 150 m d–1. Incorporation of
phytoplankton cells into fecal pellets may help explain
the rapid descent in summer but not in the early
spring, when zooplankton abundance was low, and
fecal pellets were scarce in the settled detritus. It was
suggested that incorporation of phytoplankton cells
into gelatinous matrices enhanced sedimentation
rates. Lampitt (1985) showed in subsequent years that
the phytoplankton sedimentation recorded by Billett et
al. (1983) was not an isolated incident but rather a
regular summer occurrence, and extended the re-
corded depth of this phenomenon from 2000 m to
4000 m. Phytodetrital aggregates sinking from surface
layers to 4500 m in the North Atlantic contained a rich
community of active bacteria and cyanobacteria

(Turley & Mackie 1995), which rapidly degraded and
transformed the sedimented material in the deep sea
(Lochte & Turley 1988, Pfannkuche 1993), as well as
phaeodarian radiolarians and their fecal pellets
(Riemann 1989). The formation of phytoplankton
aggregates relates partly to coagulation efficiency
(‘stickiness’), which increases when cell growth de-
creases and nutrient limitation increases (Kiørboe et al.
1990). Such phytodetrital material is also utilized as
food by a wide variety of benthic animals (Thiel et al.
1988) and benthic foraminifera (Gooday 1988). Wide-
spread and abundant phytodetrital aggregates have
also been photographed on the sea floor between 450
and 2400 m after the spring bloom on the continental
slope of the northwestern Atlantic (Hecker 1990).

Similar linkages between seasonality of surface pro-
ductivity patterns and vertical flux to the deep sea
have been recorded for many areas. These include the
Panama Basin (Honjo 1982), the Black Sea (Hay et al.
1990), the Arabian Sea (Haake et al. 1993), the Antarc-
tic (Wefer et al. 1990, DiTullio et al. 2000), the North
Pacific (Scharek et al. 1999), the North Atlantic (Honjo
& Manganini 1993, Passow & Peinert 1993, Pfann-
kuche 1993), the Cretan Sea (Danovaro et al. 2000a)
and the Barents Sea (Wassmann 1989, Wassmann et al.
1990, 1994, Andreassen et al. 1996, Andreassen &
Wassmann 1998). Seasonally atypical transient-
episodic vertical fluxes in the Sargasso Sea can also
deliver labile phytoplankton-derived detritus not asso-
ciated with the spring bloom to the deep Sargasso Sea
to depths of 3400 m (Conte et al. 1998).

It has been suggested that mucoid agglomerations
collected from the deep North Atlantic in 1857, which
were described in 1868 by Thomas Henry Huxley as
Bathybius haeckelli, may have actually been collec-
tions of settled detrital ‘fluff’ containing phytoplankton
(Rehbock 1975, Rice 1983). The story is frequently
repeated in introductory oceanography textbooks of
how Huxley thought that B. haeckelli was a primordial
life form, but his explanation was subsequently dis-
credited during the circumglobal expedition of the
HMS ‘Challenger’ (1872 to 1876), when it was con-
cluded that B. haeckelli was nothing more than a pre-
cipitate caused when seawater samples were pre-
served in alcohol. Rice (1983) has shown, however, that
in Huxley’s descriptions of B. haeckelli, he noted
inclusions that he called ‘coccoliths’, which had likely
originated from coccolithophorids, although Huxley
was unaware of this at the time. Subsequent drawings
of B. haeckelli by Haeckel (reproduced by C. Wyville
Thomson [1873], Fig. 63, presented in Rice 1983) show
what are clearly coccoliths and coccolithophorids in
the B. haeckelli matrix. Rice (1983) concluded that
there is strong circumstantial evidence that the origi-
nal samples of B. huxleyi collected in June and July of
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1857 in the northeast Atlantic may have been sedi-
mented blooms of coccolithophorids in a gelatinous
matrix, such as those described for the same area and
season by Billett et al. (1983). There is increasing evi-
dence of seasonal sedimentation of particulates to var-
ious locations in the deep sea (Deuser & Ross 1980),
including coccolithophorid blooms (Honjo 1982) and
pine pollen (Hinga et al. 1979), which becomes incor-
porated into copepod fecal pellets (Turner 1991).

There are apparent deep-sea benthic responses to
seasonality of phytoplankton and other particulate
sedimentation (reviewed by Tyler 1988, Gooday &
Turley 1990). Tyler et al. (1982, 1990) found that annual
reproductive periodicities and between-species syn-
chrony in the reproductive cycles of several species of
deep-sea echinoderms in the northeast Atlantic
matched the productive cycle in the overlying surface
waters. Echinoderm spawning occurred in late winter
and early spring, coincident with the spring bloom.
Witte (1996) found similar seasonal reproduction in
deep-sea sponges coincident with episodic vertical
flux. Lampitt (1990) presented photographic evidence
for a single barnacle on the deep-sea floor that its
growth rate over a period of 7 mo was high and
enhanced by the annual deposition of phytodetritus
from the surface layer. Smith & Baldwin (1984) found
that sediment community oxygen consumption
(SCOC) off California and Hawaii at depths of 3800 to
5900 m was seasonal, with the highest values in early
summer, suggesting a benthic response to seasonality
of surface productivity. Cole et al. (1987) found that of
the organic carbon that sedimented to 3856 m, com-
prising largely coccolithophorids and associated
macroaggregates, 50 to 85% was remineralized within
1 yr, and the decomposition of these surface-derived
particulates accounted for virtually all of the benthic
decomposition at this site. Turley & Lochte (1990) con-
firmed the potential for microbial processing of phy-
todetritus in laboratory experiments in which sterile
detritus was incubated with deep-sea microbial com-
munities under simulated abyssal conditions of high
pressure and low temperature. Williams et al. (1987)
used carbon isotopes to estimate that maximum esti-
mates for turnover of organic carbon was 4 to 18 yr in
chronologically old bathy- and abyssopelagic fish and
crustaceans from the North Pacific, and that rapid
sinking of organic detritus from the surface was the
primary source of organic carbon in the diets of these
animals. Gooday & Lambshead (1989) found that phy-
todetritus seasonally settled to the deep sea in the
northeast Atlantic was a microhabitat for benthic
foraminiferans, and that patchiness of phytodetritus
caused patchiness and species distributions of forami-
niferans. Graf (1989) found that a pulse of copepod
fecal pellets to the deep-sea benthos in the Norwegian

Sea was utilized in <8 d by burrowing infauna. A detri-
tal layer on the bottom of the northeast Pacific was sea-
sonally composed of diatoms in summer or radiolarians
in fall (Beaulieu & Smith 1998), but there was no sig-
nificant correlation between distribution and abun-
dance of deep-sea echinoderms and seafloor phytode-
tritus (Lauerman & Kaufmann 1998). Pfannkuche et al.
(1999) found that the benthic community response to
sedimentation of a spring bloom in the North Atlantic
included transient increases in metabolic activity but
not in benthic biomass.

Supply and demand of organic matter for the 
deep-sea benthos

There have been several studies indicating that
episodic input of organic matter to the deep-sea
benthos appears to be an important aspect of supply
and demand relationships. Comparisons of the supply
of POC sedimenting to the floor of the North Pacific
and SCOC, normalized to mineralization to CO2, indi-
cated shortfalls of carbon supply in meeting sediment
consumption demands of as much as 97% of mean val-
ues (Smith 1987, 1989). These results were based on
short-term measurements (14 d) of sediment-trap
accumulations of POC and measurements of SCOC
with in situ benthic respirometers. However, in a long
time series (>2 yr) of these measurements in the same
area (Smith et al. 1992), when episodic input of POC
was included in supply, there was agreement within
15% between organic carbon supply and demand.
Smith et al. (1992) concluded that episodic inputs of
organic matter can be critical for sustaining abyssal
benthic communities below surface layers where sea-
sonal inputs of primary production sediment to depth.
In fact, Riebesell & Wolf-Gladrow (1992) simulated
particle flux due to phytoplankton bloom aggregation
and found that particle flux to the deep ocean could be
solely explained by this process. Smith et al. (1994)
confirmed concurrence of increased SCOC with epi-
sodic seasonal input of POC, and time-lapse photogra-
phy revealed that mobile epibenthic megafauna such
as holothuroids and echinoids were twice as active
when detrital aggregates reached the sea floor at
4100 m in spring as during other periods of the year.

Long-term time-series studies reveal that sedimen-
tation patterns in the oligotrophic oceanic waters
have seasonal, interannual and decadal components,
as well as responses to major environmental pertur-
bations such as upwelling or El Niño-Southern Oscil-
lation events (Karl et al. 1996, Michaels & Knap 1996,
Pilskaln et al. 1996, Baldwin et al. 1998, Drazen et al.
1998, Lee et al. 1998, Smith & Druffel 1998, Thunell
1998a, Hanson et al. 2000). The range of vertical
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flux, excluding highly variable polar regions, varies
about 11-fold world-wide, and there is a general lin-
ear relationship between surface primary productiv-
ity and organic carbon flux to 2000 m (Lampitt &
Antia 1997). However, there are still major uncertain-
ties regarding amounts of primary productivity
exported by vertical flux and how these vary
between locations, over time and with water-column
food-web structure (Michaels et al. 1994a, Rivkin et
al. 1996, Boyd & Newton 1997, Doney 1997, Emerson
et al. 1997, Hansell et al. 1997a, Karl et al. 1997,
McGillicuddy & Robinson 1997). Climate-induced
domain shifts toward an ecosystem dominated by
prokaryotes over the last 3 decades may be occurring
in the North Pacific (Karl et al. 2001a), and this may
have altered nutrient stoichiometry and flux path-
ways (Karl et al. 2001b) as well as export processes
(Christian et al. 1997).

There is evidence, however, that at least some por-
tions of the deep sea may be undergoing sustained
reductions in the supply of organic matter supplied by
vertical flux, and that these reductions may be related
to processes in the overlying water column and atmo-
sphere. A 7 yr time series of supply of POC sediment-
ing to the sea floor at 4100 m in the northeastern
Pacific and SCOC revealed a pronounced decline in
POC (52 to 59%) without any significant reduction in
SCOC from 1989 to 1996 (Smith & Kaufmann 1999).
This coincided with a period of increasing sea surface
temperatures and declines in primary production,
zooplankton biomass, kelp production and seabird
abundance in the North Pacific (Druffel & Robison
1999). Smith & Kaufmann (1999) suggested that if
these temperature increases are related to anthro-
pogenic increases in greenhouse gases in the atmos-
phere, and if the decline in food supply to the deep
sea is not reversed, concomitant shifts in the charac-
teristics and composition of deep-sea benthic commu-
nities and the role of the ocean in the global carbon
cycle could result. This apparent 7 yr deficit was
reversed in the eighth year, by an increase in sedi-
mentary flux (Smith et al. 2001). What remains to be
seen is whether much of the ocean bottom periodi-
cally experiences deficits of sedimented POC relative
to SCOC. In the only other long-term study of these
parameters, in the Sargasso Sea off Bermuda, SCOC
appears relatively constant over time, and sedimented
POC appears sufficient to balance it (Sayles et al.
1994). Smith et al. (2001) suggested that additional
sources of organic matter undersampled by sediment
traps, such as episodic lateral advection, terrestrial
discharges or long-term climate variations in the
oceanic production system, may be important in
resolving discrepancies between organic matter sup-
ply and demand in the deep sea.

SUMMARY

The vertical flux in the sea is due to intertwined
combinations of zooplankton and nekton fecal pellets,
marine snow and phytoplankton detritus. Some fecal
pellets attach to marine snow, some forms of marine
snow are fecal pellets, and some phytoplankton detri-
tus forms marine snow. Portions of this flux reach the
benthos, but much, if not most, is repackaged or
recycled in the water column. Synthesis of the relative
contributions of fecal pellets, marine snow and sinking
phytoplankton to vertical flux and water-column recy-
cling is elusive, since these processes are highly vari-
able, situation specific and dependent on multiple
interacting factors. Within the last 2 decades a major
discovery is that the deep sea is not as unvarying as
earlier thought, but rather is subject to seasonal and
episodic inputs of sedimenting organic matter, which
may provoke benthic biological responses. Further, the
sedimentary flux of fecal pellets, marine snow and
phytodetritus is important not only to communities on
the sea bottom but also to those in the water column.
Together, fecal pellets, marine snow and sinking
phytoplankton are major components of the ‘biological
pump’ that not only transports and recycles materials
in the sea but also may scrub greenhouse gases from
the atmosphere.
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