Overview: climate forcing on
marine plankton



Surface temperature is a
good proxy for nutrient
enrichment in the ocean.

Warming of surface waters
makes the water column
more stable, enhancing
stratification and requiring
more energy to mix deep,
nutrient-rich water into
surface layers.

This results in nitrate, the
principal nutrient that limits
phytoplankton growth in the
ocean, being negatively
related to temperature
globally.

Climate shapes the pelagic ecosystem
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Fig. 10. A comparison of average global 88T in “C from the
ERSSTvI data set and the corresponding SNAP for the time
period 1854-2003. The symbol box provides the best-fit linear
regression lines to each data set, the number of points, and the
associated regression coefficients.

(Kamykowski and Zentara, 2005)



Climate shapes the pelagic ecosystem
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Extent of water column stratification — blue areas indicate higher
stratification and lower nitrate availability in 2002 compared to 1909.

Extended Reconstruction (ER) of Sea Surface Temperature (SST) —
monthly time series from 1854 to 2003

(Kamykowski and Zentara, 2005)



Climate shapes the pelagic ecosystem
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Extent of water column stratification — how does it affect
marine food webs?



Zooplankton in climate change studies

Zooplankton are poikilothermic, so their physiological processes are
controlled by ambient temperature (Qio);

Most zooplankton species are short-lived (< 1 year): tight coupling of
climate and population dynamics;

Zooplankton are generally not commercially exploited;

Distribution of zooplankton can accurately reflect temperature and ocean
currents;

Reproductive products of zooplankton are distributed by currents and not
by vectors, as in terrestrial ecosystems;

Bentho-pelagic coupling through meroplankton has influences on several
marine phyla, including benthic species.
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Factors influencing secondary production —

body size
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Observed global climate change
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Figure 1. Atmospheric concentration of carbon dioxide over the
past 10 000 years (large panel) and since 1750 (inset panel).
Measurements are shown from ice cores (symbols with different
colours for different studies) and atmospheric samples (red lines).
The corresponding radiative forcing is shown on the right axes of the
large panel (from IPCC, 2007a, with permission).



Observed global climate change
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Observed global climate change

Mean Surface Temperature Anomaly (*C)
2001-=2005 relative to 1951-1980
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Figure 2. Mean surface temperature anomalies for 2001 -2005
relative to 1951- 1980 from surface air measurements at
meteorological stations and ship and satellite sea surface
temperature measurements (from Hansen et al, 2006; National
Academy of Sciences, USA).



Effects on plankton

 Known, reported impacts of global warming
on plankton are manifest:

— as poleward movements in the distribution of
individual species and assemblages,

— in the earlier timing of important life cycle events
or phenology, and

— as changes in abundance and community
structure.



Warm temperate Subarctic

Effects on plankton: assemblage  assemblage

1958-1981 1958-1981

distribution

The general trend, as on land, is for
animals to expand their ranges
polewards as temperatures increase
(Beaugrand, 2008)
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Centropages chierchiae
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Effects on plankton: large-scale distribution




Effects on zooplankton
phenology

Climate-driven changes in

phenology is evident in the
Subarctic North Pacific Ocean.

Here, a single copepod species,

Neocalanus plumchrus,

dominates the zooplankton

biomass.
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The timing of the zooplankton biomass peak is
likely to be ecologically significant because it
influences the availability of large copepodites to
upper-ocean predators such as salmon, herring,
hake, and seabirds.



Effects on zooplankton phenology

Central North Sea:

Meroplankton (cirripedes,
cyphonautes, decapodes,
echinoderms, fish, and
lamellibranchs) have advanced
their appearance in the plankton

by 27 days over the past 45 years.
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Effects on zooplankton

phenology

Estuarine environment of
Narragansett Bay (USA).
Here, the timing of the first
appearance of the top
predator Mnemiopsis leidyi
has advanced by 59 days
between 1951 and 2003,
whereas the timing of one
of its major prey items,
Acartia tonsa, has remained
unchanged over this time
(Costello et al., 2006) ==

Mismatch due to differential
warming of surface and
bottom layers.
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Figure 1. First appearance [Days after May 1) of

Mnemighays lady ctenophores versus average May water

temperature in Narragansett Bay, Rhode Island in
1970—1999 drawn from data in Sullivan et al., 2001).



Effects on zooplankton
phenology
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Effects on zooplankton abundance
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Figure 6. Fluxes of planktonic foraminifera in Santa Barbara Basin
sediments. Top panel shows increased abundances of tropical -
subtropical foraminifera in the 20th century. Bottom panel shows no
temporal trend in temperate-polar foraminifera in the 20th century.
Reprinted from Field et al. (2006), by permission of AAAS.

Changes in abundance in response to long-
term warming:

Foraminifera in the California Current
(Field et al., 2006)

Throughout the 20th century, the number
of tropical/subtropical species has been
increasing, reflecting a warming trend; this
phenomenon is most dramatic after the
1960s



Effects on zooplankton abundance

In the North Sea, phytoplankton become more abundant with warming of
cool, windy, and well-mixed regions, probably because warmer
temperatures boost metabolic rates and enhance stratification, thereby
increasing the amount of time phytoplankton cells spend in the euphotic
zone.

However, phytoplankton become less abundant when already warm
regions get even warmer, probably because warmer surface water blocks
further nutrient-rich deep water from rising to the euphotic layer. This
regional phytoplankton response is transmitted up the plankton foodweb
to herbivorous copepods and carnivorous zooplankton.



Effects on zooplankton abundance

Since the 1970s, there
has been a decline in krill
(Euphausia superba)
biomass in the Southern
Ocean and a concomitant
increase in salps, which
occupy less productive
and warmer regions
(Atkinson et al., 2004).
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Effects on zooplankton abundance
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Effects on zooplankton abundance

» Jellyfish: aggregations are a natural feature of healthy pelagic ecosystems,
but evidence is accumulating that the severity and frequency of outbreaks
is increasing in many areas, including the Bering Sea, northeastern US shelf,
Gulf of Maine, Gulf of Mexico, Azov Sea, Black Sea, Caspian Sea, Northern
Benguela upwelling ecosystem, East China and Yellow seas, Sea of Japan,
and Seto Inland Sea [see reviews by Mills (2001), Purcell et al. (2007)].

* Global warming could lead to jellyfish increases because of their
physiological response and its effect on plankton foodwebs.



IPCC - Under the A2 scenario, climate models predict that most of the
world’s oceans will have warmed by 2—3.5 °C by the end of this century
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Figure 8. Projected surface temperature changes for decades early (2020 - 2029, left) and late (2090- 2099, right) in the 21st century relative
to 1980 - 1999. Panels show the GCM multimodel average projections for the B1 (top), A1B (middle), and A2 (bottom) emission scenarios.
The three scenarios range from a relatively low emissions scenario (B1), through an intermediate scenario (A1B), to a high-emissions future
(AZ from IPCC, 2007a, with permission).




Scaling the effects on zooplankton
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