INTRODUÇÃO AO CONTRODUÇÃO AO GENERIC MAPPING TOOIS

Danilo Rodrigues Vieira

Instituto Oceanográfico - USP

Antes de começar...

Há alguns arquivos necessários para acompanhar o curso. Eles podem ser obtidos no link abaixo:

http://www.danilorvieira.com/minicurso/

GMT é um conjunto com mais de 60 programas. No conjunto existem programas para gerar **mapas** e gráficos.

Também contém programas para auxiliar o preparo dos dados.

Pode-se fazer mapas para:

 Mostrar a localização da área de estudo;

Pode-se fazer mapas para:

- Mostrar a localização da área de estudo;
- Planejar um projeto;

Pode-se fazer mapas para:

- Mostrar a localização da área de estudo;
- Planejar um projeto;
- Apresentar os resultados finais.

Os mapas podem ser feitos em 30 projeções diferentes, com contornos, pseudo-cor, pseudo-3D, pontos, linhas, setas, símbolos etc.

Mesmo com 30 projeções, não inclui todas, falta a "Waterman butterfly" por exemplo.

Cada programa faz apenas uma parte do resultado final.

Cada programa faz apenas uma parte do resultado final.

-23°20'

-23°40'

Nenhum dos programas é do tipo que você clica no ícone e já vai usando.

Os programas são chamados por scripts.

Os scripts são escritos em editores de texto sem formatação ou editores de código.

Exemplos: Bloco de Notas; gedit; vim; NotePad+; TextWrangler.

NÃO em Word, OpenOffice ou similares.

Os scripts

As linhas começam com um programa, seguido por parâmetros:

pscoast -JM10c -R-46/-24/-44/-23r -Gwheat1 -Sazure2 -Wwheat4 -Df -P > ex1.ps
ps2raster ex1.ps -A -Tf

Ao longo do curso, veremos quais programas usar e quais parâmetros passar para eles.

Os scripts

Primeiro exemplo:

pscoast -JM10c -R-46/-24/-44/-23r -Gwheat1 -Sazure2 -Wwheat4 -Df -P > ex1.ps ps2raster ex1.ps -A -Tf

Windows

Salve como exemplo1.bat

Encontre o arquivo no Windows Explorer e dê dois cliques.

Linux/MacOS

A primeira linha deve ser: #!/bin/bash

Salve como exemplo1.sh

Abra o Terminal, vá até a pasta em que está o arquivo e digite: chmod +x exemplo1.sh ./exemplo1.sh

Os scripts

pscoast -JM10c -R-46/-24/-44/-23r -Gwheat1 -Sazure2 -Wwheat4 -Df -P > ex1.ps ps2raster ex1.ps -A -Tf

pscoast

pscoast -JM10c -R-46/-24/-44/-23r -Gwheat1 -Sazure2 -Wwheat4 -Df -P > ex1.ps

Desenha a linha de costa e elementos como rosa-dos-ventos, escalas, grades e bordas.

Também desenha divisas, fronteiras e rios.

-J

pscoast -JM10c -R-46/-24/-44/-23r -Gwheat1 -Sazure2 -Wwheat4 -Df -P > ex1.ps

Define a projeção e o tamanho do mapa em centímetros ou em escala.

10 cm Projeção de Mercator

A forma de especificar a projeção é sempre com -J, mas o resto varia. Veremos exemplos ao longo da semana.

pscoast -JM10c -R-46/-24/-44/-23r -Gwheat1 -Sazure2 -Wwheat4 -Df -P > ex1.ps

Especifica a região compreendida pelo mapa.

-G, -S, -W

pscoast -JM10c -R-46/-24/-44/-23r -Gwheat1 -Sazure2 -Wwheat4 -Df -P > ex1.ps

Determinam as cores das áreas emersas, das áreas com água e dos contornos respectivamente.

5

-D, -P

pscoast -JM10c -R-46/-24/-44/-23r -Gwheat1 -Sazure2 -Wwheat4 -Df -P > ex1.ps

-D: especifica a resolução da linha de costa -P: posição retrato

ps2raster

ps2raster ex1.ps -A -Tf

Converte os arquivos .ps para PDF, JPG, EPS, PNG entre outros.

-A: remove espaços em branco ao redor do mapa.

-T: especifica o formato desejado.

e - EPS f - PDF, j - JPEG g - PNG

Scripts longos

Muitos parâmetros (como a região e a projeção) aparecem iguais em diversos programas num mesmo script.

Nesses casos, usamos variáveis para facilitar o trabalho.

Windows

set reg="-R-46/-24/-44/-23r" set pro="-JM10c"

pscoast %pro% %reg% -Df -P > ex.ps

Linux/MacOS

reg="-R-46/-24/-44/-23r" pro="-JM10c"

pscoast \$pro \$reg -Df -P > ex.ps

Scripts longos

Eu recomendo colocar comentários nos scripts. Fica mais fácil para saber o que ele faz depois.

E sugiro que vocês comentem os scripts ao longo do minicurso.

Windows

REM Faz a linha de costa: pscoast %pro% %reg% -Df -P > ex.ps

Linux/MacOS

Faz a linha de costa: pscoast \$pro \$reg -Df -P > ex.ps

Scripts longos

Como diversos programas escrevem num mesmo arquivo, alguns parâmetros extras são necessários:

O primeiro programa que escreve no arquivo recebe -K (keep open).

O último que escreve recebe –O (overlay).

Os intermediários recebem –0 e –K.

A maior parte dos problemas com GMT são causados pelo uso incorreto desses dois parâmetros.

Exemplo 2

Exemplo 2

#!/bin/bash reg="-R-45:40:00/-24:00:00/-44:30:00/-23:15:00r" pro="-JM15c" arg="mapa_litoral.ps" cor="-Gwheat1 -Wthin,wheat4" gr="-Ba20mf10m" escala="-Lf-45:10:00/-23:20:00/-23:20:00/30+l" norte="-Tf-44:40:00/-23:40:00/1/3"

makecpt -Cgebco -T-180/0/1 > sea.cpt grdview etopol.nc \$reg \$pro -Csea.cpt -P -Qi600 -K > \$arq pscoast \$reg \$pro \$gr -N2/wheat4 \$norte \$escala \$cor -Df -P -K -O >> \$arq pstext refer_litoral.txt \$reg \$pro -Gblack -P -K -O >> \$arq **psxy** \$reg \$pro area.txt -L -Wthin,red -P -K -O >> \$arq **psscale** -D10c/1.0c/8c/0.25ch -Csea.cpt -B60::/:m: -P -K -O >> \$arq

reg="-Rg" pro="-JG-45:05:00/-23:30:00/3c"

makecpt -Cglobe -Z > escala.cpt grdview etopo30.grd \$reg \$pro -X0.5c -Y7.0c -Cescala.cpt -P -Qi600 -K -O >> \$arq pscoast \$reg \$pro -Di -Bg30 -A50000 -Gwheat1 -N1/wheat4 -Wwheat4 -P -K -O >> \$arq **psxy** \$reg \$pro center.txt -Sc0.12c -Wred4 -Gred -P -0 >> \$arq ps2raster \$arq -A -Tf

makecpt

http://soliton.vm.bytemark.co.uk/pub/cpt-city/

grdview

arq="mapa_litoral.ps"

grdview etopol.nc \$reg \$pro -Csea.cpt -P -Qi600 -K > \$arq Desenha gráficos em pseudo cor a partir de dados NetCDF. Usa a paleta especificada em -C e a resolução determinada por -Q.

Observe que o arquivo com cores criado pelo makecpt é usado aqui.

gr="-Ba20mf10m"

pscoast \$reg \$pro \$gr -N2/wheat4 \$norte \$escala \$cor -Df -P -K -O >> \$arq É um parâmetro com muitas utilidades. Nesse caso desenha a bordas iguais para latitude e longitude.

-23°20'

-23°40'

-N

pscoast \$reg \$pro \$gr -N2/wheat4 \$norte \$escala \$cor -Df -P -K -O >> \$arq

Desenha as linhas de divisas (2) e fronteiras (1). Também pode desenhar limites marítmos (3).

-23°20'

-23°40'

É possível fazer fronteiras e divisas com estilos diferentes, pode haver mais de um -N para o mesmo pscoast.

-T

norte="-Tf-44:40:00/-23:40:00/1/3"

pscoast \$reg \$pro \$gr -N2/wheat4 \$norte \$escala \$cor -Df -P -К -O >> \$arq Faz a rosa dos ventos centrada nas coordenadas especificadas. No caso optou-se pelo estilo 3.

-23°20'

-23°40'

Os estilos possíveis são: 1: pontos cardeais 2: pontos colaterais 3: pontos sub-colaterais

O f representa uma rosa dos ventos *fancy* (mais detalhada). Pode-se tirar o f para obter-se uma rosa mais simples. Os alunos são encorajados a testar e ver a diferença.

escala="-Lf-45:10:00/-23:20:00/-23:20:00/30+l"

pscoast \$reg \$pro \$gr -N2/wheat4 \$norte \$escala \$cor -Df -P -K -O >> \$arq Faz a escala do mapa centralizada nas coordenadas especificadas. A segunda latitude é a referência.

-23°20'

-23°40'

O +l no final indica que queremos que apareça a unidade.

Colocando um n ao lado do 30, teríamos uma escala em milhas náuticas.

pstext

pstext refer_litoral.txt \$reg \$pro -Gblack -P -K -O >> \$arq

Coloca textos contidos no arquivo refer_litoral.txt.

-45:04:16 -23:26:02 8 0 13 RM Ubatuba . . . -45:21:29 -23:46:41 8 0 13 LM Ilhabela -45.139389 -23.837485 6 0 13 CM I. dos B\372zios . . . -45.385895 -23.860000 7 0 13 LB Ilha de -45.427780 -23.880000 7 0 13 LB S\3430 Sebasti\3430

lon lat tamanho ângulo fonte posição texto

	Ubatuba		
Caraguatatuba	L Anchieta		
São Sebastião Ilhabela	L Vikária		
Ilha de São Sebastião	l. dos Búzios		

pstext

pstext refer_litoral.txt \$reg \$pro -Gblack -P -K -O >> \$arq

Coloca textos contidos no arquivo refer_litoral.txt.

-45:04:16 -23:26:02 8 0 13 RM Ubatuba . . . -45:21:29 -23:46:41 8 0 13 LM Ilhabela -45.139389 -23.837485 6 0 13 CM I. dos B\372zios . . . -45.385895 -23.860000 7 0 13 LB Ilha de -45.427780 -23.880000 7 0 13 LB S\3430 Sebasti\3430

A fonte é escolhida pelo número ou nome:

0	Helvetica	18	Bookman-Demil
1	Helvetica-Bold	19	Bookman-L
2	Helvetica-Oblique	20	Bookman-Lightl
3	Helvetica-BoldOblique	21	Helvetica-Na
4	Times-Roman	22	Helvetica-Narrow-I
5	Times-Bold	23	Helvetica-Narrow-Obl
6	Times-Italic	24	Helvetica-Nar
7	Times-BoldItalic		BoldObl
8	Courier	25	NewCenturySchlbk-Ro
9	Courier-Bold	26	NewCenturySchlbk-I
10	Courier-Oblique	27	NewCenturySchlbk-I
11	Courier-BoldOblique	28	NewCenturySchlbk-BoldI
12	Symbol	29	Palatino-Ro
13	AvantGarde-Book	30	Palatino-I
14	AvantGarde-BookOblique	31	Palatino-I
15	AvantGarde-Demi	32	Palatino-BoldI
16	AvantGarde-DemiOblique	33	ZapfChancery-MediumI
17	Bookman-Demi	34	ZapfDing

Italic Light Italic rrow Bold lique rrowlique man Italic Bold Italic man Italic Bold Italic Italic bats

pstext

pstext refer_litoral.txt \$reg \$pro -Gblack -P -K -O >> \$arq

Coloca textos contidos no arquivo refer_litoral.txt.

-45:04:16 -23:26:02 8 0 13 RM Ubatuba -45:21:29 -23:46:41 8 0 13 LM Ilhabela -45.139389 -23.837485 6 0 13 CM I. dos Búzios . . . -45.385895 -23.860000 7 0 13 LB Ilha de -45.427780 -23.880000 7 0 13 LB São Sebastião

A posição é escolhida por um par de letras. A primeira é a posição horizontal, a segunda é a vertical.

São Sebastião

Left **B**ottom

psxy \$reg \$pro area.txt -L -Wthin,red -P -K -O >> \$arq

Plota pontos contidos no arquivo. A presença do -L indica que o GMT deve ligar o primeiro ponto ao último para formar um polígono fechado.

Não se deixe enganar pela descrição "plota pontos". O psxy é extremamente útil: plota estações, circulos proporcionais a valores, radiais e até mesmo linhas de costa com mais detalhes que as que acompanham o GMT.

psscale

psscale -D10c/1.0c/8c/0.25ch -Csea.cpt -B60::/:m: -P -K -0 >> \$arq

Desenha a escala de cores correspondente ao arquivo especificado pelo -C.

-23°20'

-23°40'
Exemplo 2

Já vimos os outros programas, mas ainda há alguns parâmetros novos.

Mais um exemplo simples

Neste exemplo, veremos mais uma projeção e colocaremos a batimetria em pseudo-3D.

set regiao="-R-65/-15/-80/-58"

Observe que esta é outra forma de escolher a área: lat1/lat2/lon1/lon2 (o menor valor primeiro).

As formas de especificar a área diferenciam-se pela presença ou não do **r** no final.

-JS

Projeção estereográfica.

grdgradient

grdgradient weddell_gebco.nc -Nt0.6 -A45 -Gluz.grd Calcula o gradiente na direção especificada por -A (em graus) e normaliza os valores de forma que tenham o valor máximo especificado em –N.

$$\mathbf{z}'(\mathbf{x},\mathbf{y}) = -\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \operatorname{sen} \phi + \frac{\partial \mathbf{z}}{\partial \mathbf{y}} \cos \phi\right)$$

O ângulo é um azimute, ou seja, zero: norte; 90: leste; 180: sul...

grdgradient

grdgradient weddell_gebco.nc -Nt0.6 -A45 -Gluz.grd O valor é usado pelo grdview para calcular a intensidade da cor.

Exercício

Usando a projeção oblíqua de Mercator, construa um mapa da região de Cananéia.

Use os parâmetros abaixo:

-R-48:05:00/-25:22:00/-47:25:00/-24:36:12r -JOa-47.45/-25/60/10c -Ba20m/a16m

Use a batimetria contida no arquivo cananeia.nc

Em projeções oblíquas é muito importante incluir a rosa dos ventos.

INTRODUÇÃO AO CONTRODUÇÃO AO GENERIC MAPPING TOOLS

2° dia

Danilo Rodrigues Vieira

Instituto Oceanográfico - USP

Agora veremos como filtrar e interpolar dados com o GMT. Neste exemplo, vamos:

- Filtrar e interpolar dados, a batimetria no exemplo;
- Criar e usar uma linha de costa com mais detalhes.

Além disso, iremos:

- Diferenciar pontos e linhas usando arquivos multi-seção;
- Colocar legendas.

Partindo de dados coletados (esquerda), chegaremos à visualização da batimetria (direita).

Para isso, usaremos o blockmean e o surface:

regiao="-R-45:07:40/-23:31:45/-45:04:20/-23:29:00r"

blockmean batimFlamengo.xyz **\$regiao** -I1c > batimFlamengo_mean.xyz surface batimFlamengo_mean.xyz -T0.35 -GbatimMF.nc \$regiao -I1c

> O primeiro filtra os dados, o segundo interpola para uma grade regular.

Lembrando que o arquivo resultante será visualizado com o grdview.

Esse processo pode ser usado para outras variáveis: temperatura, salinidade, clorofila, concentração de poluentes, SSH, nutrientes etc.

O blockmean filtra usando uma média em caixa em uma grade com o espaçamento indicado.

O surface coloca os dados na grade adaptando uma superfície e resolvendo-a em cada ponto.

> Além de média, pode-se usar a mediana ou a moda, com blockmedian e blockmode respectivamente.

Linha de costa

Linha de costa

Vamos usar um arquivo multi-seção para fazer uma linha de costa melhor.

Nestes arquivos, cada seção é um polígono.

-23°30'40'

-23°31'20'

-45°07'20"

-45°06'40'

-45°07'20' -45°06'40' -45°05'20" -45°04'40' -45°06'00' -23°29'20' -23°29'20" Saco do Perequê-mirim Praia da Enseada -23°30'00" -23°30'00"

Enseada do

Flamengo

-45°06'00'

1 seção nesse caso, uma das ilhas.

-23°30'40"

-23°31'20"

Boqueirão 🔶

-45°04'40'

-45°05'20'

> -Gwheat -Wthin,wheat4 -23.49930 -45.10288 -23.49953 -45.10270 -23.49931 -45.10249 -23.49904 -45.10234 -23.49870 -45.10246 -23.49875 -45.10280 > -Gwheat -Wthin,wheat4 -23.49925 -45.10220 -23.49904 -45.10224 -23.49898 -45.10203 -23.49920 -45.10200 > -Gwheat -Wthin,wheat4 -23.49936 -45.10228 -23.49960 -45.10239 -23.49963 -45.10218 -23.49947 -45.10209 > -Gwheat -Wthin,wheat4 -23.49424 -45.09847 -23.49439 -45.09813 -23.49469 -45.09815 -23.49485 -45.09862 -23.49470 -45.09879 -23.49441 -45.09876

Linha de costa

O arquivo será plotado pelo psxy:

```
proj="-JM14.5c"
arquivo="mapa_radiaisMF.ps"
```

psxy linha_de_costa.dat \$regiao \$proj -L -m -: -P -K -O >> \$arquivo

Observe que são polígonos fechados (-L) especificados por um arquivo multi-seção (-m).

Normalmente, o GMT lê longitude (eixo X), depois latitude (eixo Y). Nesse caso o arquivo tem latitude primeiro, então avisamos ao GMT usando o -:.

Estações e radiais

Tanto as radiais quanto estações serão plotadas pelo psxy.

Existe uma diferença importante entre plotar estações e radiais:

psxy \$regiao \$proj radiais.txt -m -L -Wthin,0/100/0 -P -K -0 >> \$arquivo
psxy \$regiao \$proj est_radiais.txt -m -S0.27c -P -K -0 >> \$arquivo

A presença do -S indica que serão plotados símbolos. Caso o parâmetro esteja ausente, serão plotadas linhas.

Estações

As linhas de cada seção contém a longitude, a latitude e o símbolo desejado. Opcionalmente, pode-se especificar o tamanho do símbolo.

> -Gdodgerblue -Wthin,darkblue -45.10419815 -23.52431852 s -45.09768148 -23.52327407 s -45.09060556 -23.52267963 s -45.08412963 -23.52199074 s -45.10490370 -23.49923889 s -45.10550926 -23.50258519 s -45.10673889 -23.50606111 s > -Gdarkmagenta -Wthin,black -45.07755000 -23.52465000 d > -Gblue -Wthin,black -45.119047 -23.500463 klflag/0.5c

> -Gorange -Wthin, black -45.123231 -23.505126 krflag -45.124079 -23.504241 krflag krflag -45.123875 -23.502027 krflag -45.118221 -23.498603

Estações

O texto das estações fica em um arquivo separado para ser plotado pelo pstext.

- -45.10550926 -23.50258519 5 0 13 CM f
- -45.10673889 -23.50606111 5 0 13 CM g
- -45.10419815 -23.52431852 5 0 13 CM a -45.09768148 -23.52327407 5 0 13 CM b -45.09060556 -23.52267963 5 0 13 CM c -45.08412963 -23.52199074 5 0 13 CM d -45.10490370 -23.49923889 5 0 13 CM e

Estações

psxy \$regiao \$proj radiais.txt -m -L -Wthin,0/100/0 -P -K -O >> \$arquivo psxy \$regiao \$proj correntografo.txt -m -S0.27c -P -K -O >> \$arquivo psxy \$regiao \$proj est_radiais.txt -m -S0.27c -P -K -O >> \$arquivo

pstext estacoes_let.txt \$regiao \$proj -Gwhite -P -K -O >> \$arquivo

-23°29'20"

-23°30'00"

Legendas

```
H 10 Times-Bold Legenda
                                                            Espaço (Gap)
G 0.4c
H 8 Times-Bold Pontos de referÍncia
G 0.3c
N 2
S 0.1i krflag 0.5c orange thin, black 0.3i Marinas
S 0.1i klflag 0.5c blue
                           thin, black 0.3i Base
N 1
G 0.4c
H 8 Times-Bold Estações de coleta
G 0.3c
N 3
S 0.1i s 0.27c dodgerblue thin, darkblue 0.3i CTD
S 0.1i a 0.27c red thin, darkred 0.3i Est. noturna
S 0.1i d 0.27c darkmagenta thin, black 0.3i Referência
N 1
G 0.4c
                                                         Marinas
H 8 Times-Bold Radiais de ADCP
G 0.3c
                                                        CTD
N 2
                                                          Radial 1 (2089 m)
S 0.1i - 0.15i - thin, green4, -. - 0.3i Radial 1
S 0.1i - 0.15i - thin, dodgerblue4,. 0.3i Radial 2
                                                         -50
                                                               -40
N 1
G 0.4c
```

Cabeçalho (Header)

Número de colunas Símbolos e seus significados

Legendas

8 Times-Bold Batimetria	
0.3c	
1	
seacut.cpt 0.5c 0.3c -B10	Barra d
1	
0.3c	
8 Times-Roman c km	Texto (L
-0.3c	
- −23:30:30 5 f	Escala
6 Times-Roman C Projeção de Mercator	
	<pre>8 Times-Bold Batimetria 0.3c 1 seacut.cpt 0.5c 0.3c -B10 1 0.3c 8 Times-Roman c km -0.3c 23:30:30 5 f 6 Times-Roman C Projeção de Mercator</pre>

le cores

Label)

(Map scale)

Finalizando

Por último, usamos o psbasemap para desenhar elementos que normalmente seriam desenhados com o pscoast.

Mapas de contornos

Os contornos são feitos pelo grdcontour. Ele recebe como parâmetros o intervalo entre os contornos (-C) e o intervalo entre anotações (-A).

Mapas de contornos

O mapa anterior pode ser produzido usando o seguinte:

grdcontour "soda_ssh.cdf?ssh[1]" -C0.1 -A0.2 ...

O exercício é obter o mapa abaixo. Usando essa área:

-R-110:00:00/-35:00:00/10:30:00/35:00:00r

30° 20°

 10°

 -10°

 -20°

-30°

Mapas agrupados

Usando o exemplo anterior, vamos criar um conjunto de mapas na mesma figura.

Abril

0.8

30°
15°
0°
-15°
-30°

Mapas agrupados

grdview "soda_ssh.cdf?ssh[1]" -Y15c ... > \$a pscoast ... >> \$a

grdview "soda_ssh.cdf?ssh[2]" -X7c ... >> \$a pscoast ... >> \$a

grdview "soda_ssh.cdf?ssh[3]" -Y-5c -X-7c ... >> \$a pscoast ... >> \$a

grdview "soda_ssh.cdf?ssh[4]" -X7c ... >> \$a pscoast ... >> \$a

-JM6c

Título

grdview ... -Bf10da20d/f7.5da15:."Janeiro":Wesn ... > \$a pscoast ... >> \$a

grdview ... -Bf10da20d/f7.5da15:."Fevereiro":Wesn ... >> \$a pscoast ... >> \$a

grdview ... -Bf10da20d/f7.5da15:."Mar\347o":Wesn ... >> \$a pscoast ... >> \$a

grdview ... -Bf10da20d/f7.5da15:."Abril":Wesn ... >> \$a pscoast ... >> \$a

Título

Como vimos em exemplos anteriores, alguns caracteres não aparecem corretamente.

Os caracteres especiais ou com acentos devem ser colocados com a codificação ao lado.

O ç, por exemplo, corresponde a \347

								V
octal	0	1	2	3	4	5	6	7
\03x		•	•••	ТМ		_	fi	ž
\04x		!	"	#	\$	%	&	,
\05x	()	*	+	,	_	•	/
\06x	0	1	2	3	4	5	6	7
\07x	8	9	•	;	<	=	>	?
\10x	@	А	В	С	D	E	F	G
\11x	Η	Ι	J	K	L	М	N	0
\12x	Р	Q	R	S	Т	U	V	W
\13x	Х	Y	Ζ	[١]	^	—
\14x	6	a	b	С	d	e	f	g
\15x	h	i	j	k	1	m	n	0
\16x	р	q	r	S	t	u	V	W
\17x	X	У	Z	{	I	}	~	š
\20x	Œ	Ŧ	‡	Ł	/	<	Š	>
\21x	œ	Ÿ	Ž	ł	%0	"	"	"
\22x	1	`	,	^	~	-	J	•
\23x	••	,	o	ذ	1	"	c	~
\24x		i	¢	£	¤	¥	I	§
\25x	••	©	а	«	Г	-	R	_
\26x	0	±	2	3	,	μ	¶	•
\27x	5	1	0	*	1⁄4	1⁄2	3⁄4	i
\30x	À	Á	Â	Ã	Ä	Å	Æ	Ç
\31x	È	É	Ê	Ë	Ì	Í	Î	Ï
\32x	Ð	Ñ	Ò	Ó	Ô	Õ	Ö	×
\33x	Ø	Ù	Ú	Û	Ü	Ý	Þ	ß
\34x	à	á	â	ã	ä	å	æ	Ç
\35x	è	é	ê	ë	ì	í	î	ï
\36x	ð	ñ	ò	ó	ô	õ	Ö	÷
\37x	ø	ù	ú	û	ü	ý	þ	ÿ

Podemos ajustar alguns parâmetros para melhorar os mapas.

Para isso, usa-se o gmtset.

gmtset HEADER_OFFSET -8p HEADER_FONT_SIZE 10p ANNOT_FONT_SIZE_PRIMARY 10p CHAR_ENCODING ISOLatin1+

> Assim, todos os programas que estiverem depois do gmtset serão alterados.

Para alterar só um programa, podese colocar assim:

grdview --HEADER_OFFSET=-8p ... > arquivo.ps

Mapas com círculos

Usando essa área: -R-60/-35/10.5/0r

vamos fazer um mapa com valores proporcionais a círculos.

Mapas com círculos

Usando essa área: -R-60/-35/10.5/0r vamos fazer um mapa com valores proporcionais a círculos.

Para isso, vamos usar dados inventados. Crie um arquivo de texto com esses valores:

- 0 -15 0.25
- 0 -30 0.16
- -10 -15 0.08
- -10 -30 0.19
- -20 -15 0.08
- -20 -30 0.19

psxy arquivo.txt -Gred -Sc ...

Mapas com círculos

Ao fazer esse tipo de mapa, deve-se evitar colocar os dados diretamente como o diâmetro do círculo.

Aconselha-se colocar os valores proporcionais à área do círculo.

Para isso, usa-se:

diâmetro = 2
$$\sqrt{\frac{\text{valores}}{\pi}}$$

INTRODUÇÃO AO CONTRODUÇÃO AO GENERIC MAPPING TOOLS

3° dia

Danilo Rodrigues Vieira

Instituto Oceanográfico - USP

Borda

gmtset FRAME_WIDTH 0.2c

Perfis

Nesta exemplo, vamos trabalhar com dados de CTD.

Os dados serão filtrados usando uma média ponderada móvel, com pesos dados por uma gaussiana e depois plotados.

Perfis

Perfis

A filtragem é feita com o filter1d. Não usaremos o que vimos ontem, pois aqueles programas trabalham em duas dimensões.

filter1d temp.dat -Fg.7 -T0/10/0.5 > temp_filt.dat

O parâmetro -F especifica os pesos usados na média móvel. No caso, queremos uma gaussiana, com largura 0.7 unidades.

O parâmetro –T funciona da mesma forma que no makecpt: min/máx/ intervalo.

As outras opções de filtro incluem: c (cosseno); b (linear). Além de filtros que não fazem médias ponderadas: m (retorna o mediana); l (retorna o menor valor na janela) e u (retorna o valor máximo na janela).

Perfis: exercício

filter1d temp.dat -Fg.7 -T0/10/0.5 > temp_filt.dat

Produzir os perfis ao lado usando psxy. Os pontos são os dados originais, a linha é o filtrado.

Dicas: -JX7c/-14c -R24.9/24.95/1/10 -R34.3/34.35/1/10

Lembram da diferença entre plotar estações e radiais (pontos e linhas)?

-B0.01:"Temperatura":/1:"Profundidade (m)":/:."Est. 2":WSne

Seções verticais: exercício

Usando o arquivo temperatura. nc, produzir a seção ao lado. Use os valores que julgar adequado na projeção.

Bônus:

- escreva "Talude" sobre o talude, acompanhando a inclinação do mesmo;
- coloque uma isoterma;
- coloque linhas de grade.

Desafio nível hard:

Escrever "Profundidade (m)" centralizado verticalmente.

INTRODUÇÃO AO CONTRODUÇÃO AO GENERIC MAPPING TOOLS

4° dia

Danilo Rodrigues Vieira

Instituto Oceanográfico - USP

Mapas com vetores

Mapas com vetores

grdvector u.cdf v.cdf -Q0.05c/0.4c/0.15c -S2 -Gblue -R... -J... > ...

Mapas com vetores

grdvector u.cdf?u[1] v.cdf?v[1] -Sl2c -Ccor.cpt ... > ...

Outra opção é colocar todos os vetores com o mesmo tamanho e identificar o módulo pela cor.

Observe que, agora, o –S passa a especificar o tamanho de cada vetor e a cor é dada pela paleta no -C.

Nada te impede de colocar os vetores com tamanhos e cores diferentes.

Gráficos

Às vezes é útil ter um gráfico de proporções direto no mapa (porcentagem de areia/argila/ cascalho, por exemplo). Nesse caso, é o psscale que faz o gráfico.

Gráficos

cor.cpt
0 255 239 219 1.1 255 239 219 ;silte
1.1 238 223 204 2.1 238 223 204 ;argila
2.1 205 192 176 3.1 205 192 176 ;cascalho

pie.dat
202.5 20.5 1 0.5 0 90
202.5 20.5 2 0.5 90 180
202.5 20.5 3 0.5 180 360

Observe que neste exemplo criamos nosso colormap com anotações.

gmtset GRID_PEN thin,slategray,--

psxy pie.dat -Sw -Ccor.cpt ... > ...
psscale -D... -Ccores.cpt -L0.1 ... >> \$psfile

Um pouco mais sobre colormaps

No exercício anterior, criamos um colormap discreto e com anotações. Esse conceito poderia ser ampliado para fazer um colormap de áreas contaminadas ou não; distribuição de espécies e muitas outras coisas.

Além disso, os colormaps podem ser feitos de uma forma mais fácil:

oldwhite1 1.1 oldwhite1 ;silte 0 1.1 oldwhite2 2.1 oldwhite2 ;argila 2.1 oldwhite3 3.1 oldwhite3 ;cascalho

Declinação magnética

-Tm-45.1/-23.5/8c/-20.7333/"-20\26044\042 (2009)"

Além da rosa dos ventos convencional, há a possibilidade de fazer uma com declinação magnética.

Além da posição do centro da rosa (lon, lat), especificamos o raio, a declinação e o texto.

Isto é usado no pscoast, assim como a rosa convencional.

pstext avançado

Não são apenas os caracteres da tabela que podem ser usados. Existem alguns "comandos" especiais.

5 9.0 16 0 31 CM H@-2@-0 8.5 16 0 13 CM pode-se @%33%trocar@%% de fonte e @_sublinhar@_ 8.0 16 0 19 CM @~D@~ = b@+2@+ - 4 a c 7.5 16 0 13 CM Este texto \351 @;blue;azul@;; 7.0 16 0 13 CM E este \351 @%9%@;red;vermelho

$H_{2}O$ pode-se trocar de fonte e sublinhar $\Lambda = b^2 - 4 a c$

- Este texto é azul
- E este é **vermelho**

Não é só o pstext que faz textos

psxy seno.txt -S0.5c -R-1/-1/3.2/1.2r -JX6c -Gblack > arquivo.ps

O psxy também pode colocar textos. E o texto nem precisa ser reto.

0	0	l/o
0.2856	0.2817	l/c
0.5712	0.5406	l/e
0.8568	0.7557	l/a
1.1424	0.9096	l/n
1.4280	0.9898	l/o
1.7136	0.9898	l/g
1.9992	0.9096	l/r
2.2848	0.7557	l/a
2.5704	0.5406	l/f
2.8560	0.2817	l/i
3.1416	0.0000	l/a

a Para os curiosos: % no MATLAB:

```
y = sin(x);
[x' y']
```


a

x = linspace(0, pi, numel('oceanografia'));

Ogrdview também faz 3D

a="-R-15/15/-15/15"

grdmath \$a -I0.3 X Y HYPOT DUP 2 MUL PI MUL 8 DIV COS EXCH NEG 10 DIV EXP MUL = graf.nc echo "-5 128 5 128" > gray.cpt

grdgradient graf.nc -A225 -Gin.nc -Nt0.75 grdview graf.nc -JX6i -JZ2i -B5/5/0.5SEwnZ -N-1/white -Qi300 -P -Iin.nc -X1.5i -Cgray.cpt \$a/-1/1 -K -E120/30 > \$a echo "4.1 5.5 50 0 33 BC z(r) = cos (2@~p@~r/8) * e@+-r/10@+" | pstext -R0/11/0/8.5 -Jx1i -0 >> \$a

ps2raster example_05.ps -A -Tf

O script a cima também calcula os valores da função sem nenhum arquivo externo. Mas usa notação polonesa reversa. É difícil de entender e não será abordado no curso.

 $z(r) = cos (2\pi r/8) * e^{-r/10}$

Links úteis

GEBCO (batimetria em 0.5' e 1'): www.gebco.net/

ETOPO1 (batimetria em 1'): www.ngdc.noaa.gov/mgg/global/

cpt-city (mais colormaps): http://soliton.vm.bytemark.co.uk/pub/cpt-city/

Manual dos programas: http://gmt.soest.hawaii.edu/gmt/html/gmt_man.html

INTRODUÇÃO AO CONTRODUÇÃO AO GENERIC MAPPING TOOLS

FIM

Danilo Rodrigues Vieira

Instituto Oceanográfico - USP

