Construindo um protótipo de equipamento para transmissão de dados em tempo real via internet

O minicurso

Neste minicurso, os alunos serão introduzidos aos conceitos mais básicos de eletrônica e telemetria enquanto montam um protótipo capaz de transmitir dados de temperatura da água em tempo real via internet. Haverá também uma parte apenas teórica mostrando a transmissão de outros parâmetros e automação de processos.

- 1. Introdução à eletrônica
- 2. Medindo a temperatura
- 3. Transmissão de dados
 - 4. Mais parâmetros
- 5. Automação de processos

MOTIVAÇÃO

Comprar ou desenvolver?

Quando vale a pena desenvolver o próprio equipamento:

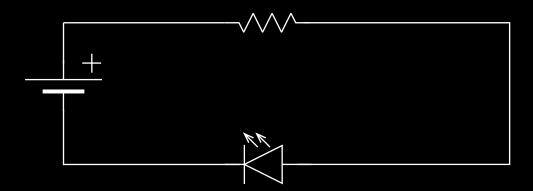
- Orçamento apertado
- Não há necessidade de alta precisão e exatidão
- Necessidade de funcionalidades não convencionais
- O equipamento não é o produto

MOTIVAÇÃO

Comprar ou desenvolver?

Exemplos de quando é vantajoso desenvolver:

Licitações de monitoramento de curto prazo, onde o licitante pede apenas os dados


Monitoramento de cultivos

Exemplo de quando é vantajoso usar o equipamento convencional:

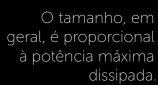
Pesquisas científicas em que precisão e exatidão sejam essenciais

Eletrônica

A forma mais simples de entender a eletrônica é vê-la como uma forma de manipular uma corrente continua, usando diversos componentes.

Neste minicurso não entraremos em muitos detalhes e veremos apenas os componentes mais importantes.

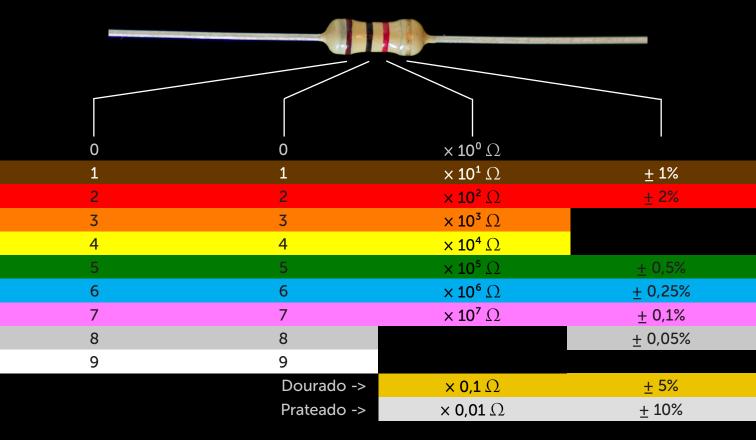
Resistor


SÍMBOLO

Oferecem resistência à passagem de corrente.

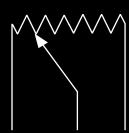
Convertem energia em calor.

Resistência medida em Ohms (Ω) .


As listras indicam a resistência.

Podem pegar fogo se passar do limite.

Resistor



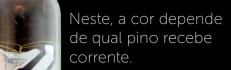
Resultado: 1000 Ω com 5% de tolerância, ou seja, o valor está entre 950 Ω e 1050 Ω .

Resistor variável

Podem apresentar três terminais como se fossem dois resistores: enquanto um aumenta, o outro diminui.

Diodo

Permitem que a corrente passe apenas em um sentido.


SÍMBOLO

Diodo fotoemissor (LED)

Permitem que a corrente passe apenas em um sentido e emitem luz.

Não emitem apenas luz visível, há LEDs infravermelho e ultra-violeta.

SÍMBOLO

Diodo fotoemissor (LED)

A corrente flui para o lado maior.

O corte na parte externa também indica o sentido.

Capacitor

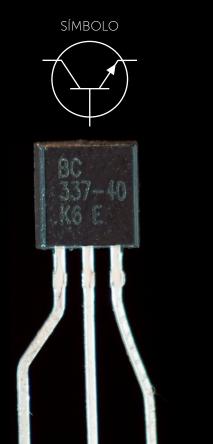
SÍMBOLO

Armazenam corrente.

Capacitância medida em Farads (F).

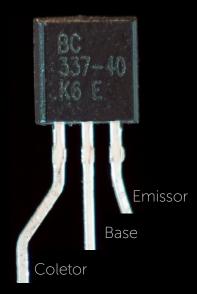
Também chamados de condensadores.

Polarizado: a corrente deve ir para o lado com a faixa.


Não polarizado: não importa o sentido da corrente.

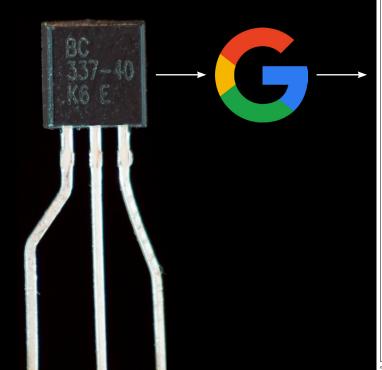
Muito úteis para filtrar a corrente.

Transistor


Permitem a passagem condicional da corrente.

Transistor NPN

O que deseja-se controlar fica ligado ao coletor e o emissor fica aterrado.


Quando passa corrente pela base, o circuito é fechado.

Nem todos os transistores são iguais. Sempre confira com o fabricante quais são as posições dos pinos de seu transistor.

Informações

Todas as informações necessárias sobre um componente podem ser obtidas no datasheet.

Exemplo:

BC337/338

Switching and Amplifier Applications

· Suitable for AF-Driver stages and low power output stages

Complement to BC327/BC328

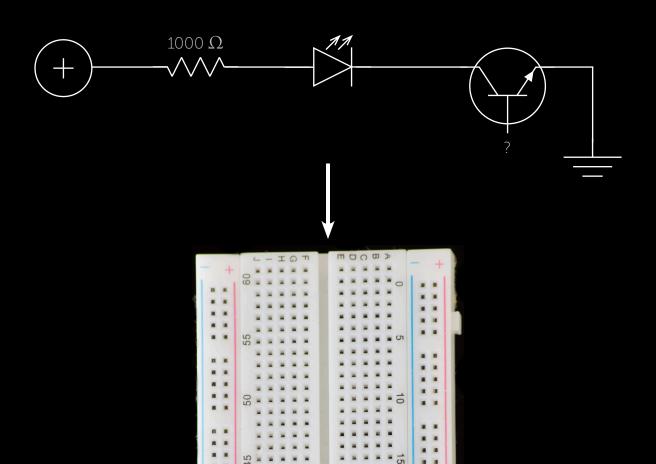
NPN Epitaxial Silicon Transistor

Absolute Maximum Ratings To=25TC unless otherwise noted

Symbol Parameter		Value	Units	
V _{CES}	Collector-Emitter Voltage			
	: BC337	50	V	
	: BC338	30	V	
V _{CEO}	Collector-Emitter Voltage			
	: BC337	45	V	
	: BC338	25	V	
V _{EBO}	Emitter-Base Voltage	5	V	
l _c	Collector Current (DC)	800	mA	
Pc	Collector Power Dissipation	625	mW	
T _J	Junction Temperature	150	[C	
T _{STG}	Storage Temperature	-55 ~ 150	ΠC	

Electrical Characteristics To=25FC unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C =10mA, I _B =0				
	: BC337		45			V
	: BC338		25			V
BV _{CES}	Collector-Emitter Breakdown Voltage	I _C =0.1mA, V _{RF} =0				
	: BC337		50			V
	: BC338		30			V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E =0.1mA, I _C =0	5			V
I _{CES}	Collector Cut-off Current					
	: BC337	V _{CF} =45V, I _R =0		2	100	nA
	: BC338	V _{CE} =25V, I _B =0		2	100	nA
h _{FF1}	DC Current Gain	V _{CF} =1V, I _C =100mA	100		630	
h _{FE2}		V _{CE} =1V, I _C =300mA	60			
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C =500mA, I _B =50mA			0.7	V
V _{BE} (on)	Base Emitter On Voltage	V _{CE} =1V, I _C =300mA			1.2	V
f _T	Current Gain Bandwidth Product	V _{CE} =5V, I _C =10mA, f=50MHz		100		MHz
Cob	Output Capacitance	V _{CB} =10V, I _E =0, f=1MHz		12		pF

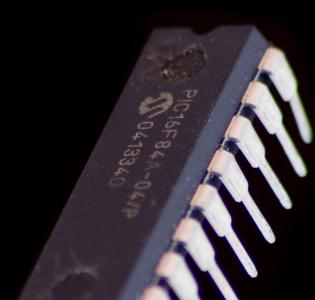

h_{FE} Classification

Classification	16	25	40
h _{FE1}	100 ~ 250	160 ~ 400	250 ~ 630
h _{FE2}	60-	100-	170-

2002 Fairchild Semiconductor Corporation

Rev. A2, August 2002

Exercício prático



COMPONENTES ELETRÔNICOS

Microcontrolador

É quase que um computador completo em um chip. Possuem:

- Processador
- Memória temporária
- Memória permanente
- Pinos de entrada e saída

Entrada analógica

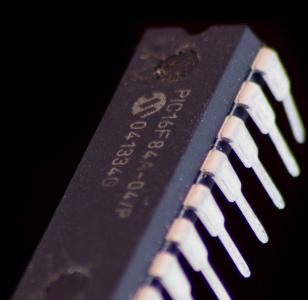
Uma entrada em que a tensão varia de forma contínua.

Um componente ou sensor recebe uma tensão constante e conhecida e retorna uma tensão proporcional a uma variável do ambiente ou ação do usuário. Exemplo:

Este é um termistor. Ele é um resistor, mas sua resistência depende da temperatura.

PC 1334.0

Se estiver difícil, aguarde o exercício e vai ficar mais claro.


Entrada e saída digital

Uma entrada ou saída em que a tensão varia de forma "discreta" entre dois valores fixos, por exemplo 0V e 5V, representando zeros e uns.

É necessário que esses zeros e uns sejam transmitidos seguindo um protocolo (I2C, SPI, serial, one-wire).

- Sensores
- Computadores
- Módulos
- Outros microcontroladores

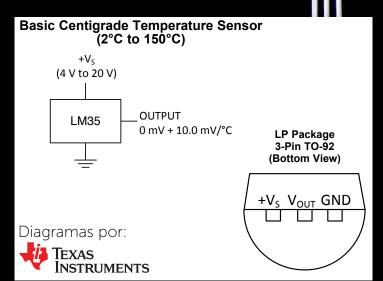
Se estiver prestando atenção, pergunte sobre as aspas em "discreta".

Entrada e saída digital

Uma entrada ou saída em que a tensão varia de forma "discreta" entre dois valores fixos, por exemplo 0V e 5V, representando zeros e uns.

É necessário que esses zeros e uns sejam transmitidos seguindo um protocolo (I2C, SPI, serial, one-wire).

Exemplo: Serial Peripheral Interface (SPI).


MISO
SCLK

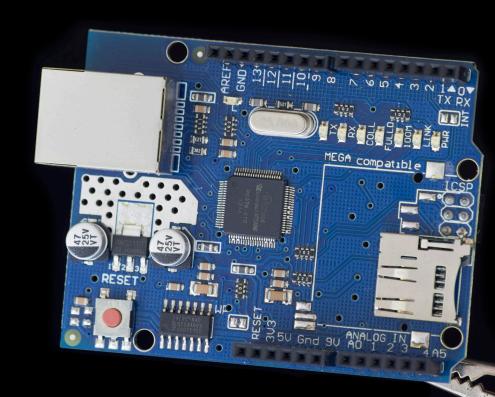
Exercício prático

LM35

Fornece uma saída analógica proporcional à temperatura.

A tensão de saída não depende da tensão que entra.

Exercício prático

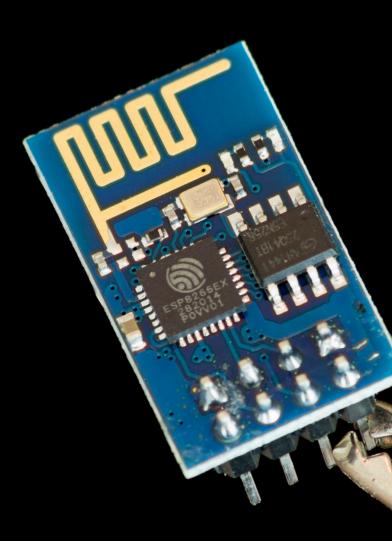

```
int sensor = 0; // O pino em que está o TMP36
void setup() {
    Serial.begin(9600);
void loop() {
    int reading = analogRead(sensor);
    float voltagem = reading * 5.0;
    voltagem /= 1024.0;
    Serial.print(voltagem); Serial.println(" volts");
    float temperatura = voltagem * 100;
    Serial.print(temperatura); Serial.println(" oC");
    delay(1000);
```

Ethernet

Vantagem: Baixo consumo de energia.

Desvantagem: Limitado a presença do cabo.

Exemplo: Ethernet Shield para Arduino (comunicação ICSP)



Wi-Fi

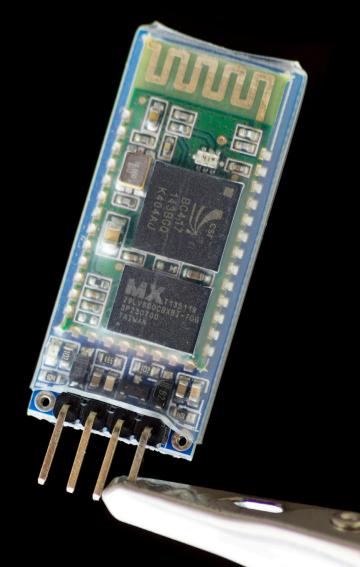
Vantagem: Não necessita cabos.

Desvantagem: Alto consumo de energia; Restrito a presença de roteador; Sujeito a interferências.

Exemplo: ESP8256 (comunicação serial)

Bluetooth

Vantagem:


Não necessita cabos.

Desvantagem:

Alto consumo de energia; Necessita um equipamento intermediário que receba os dados; Sujeito a interferências.

Exemplo:

Módulo bluetooth de comunicação serial.

Satélite

Vantagem:

Transmite de quase qualquer lugar do mundo.

Desvantagem:

Alto consumo de energia; Não funciona bem com tempo nublado.

Exemplo:

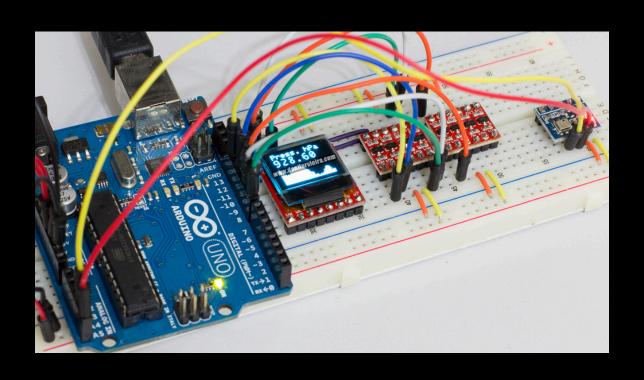
Terminal satelital SkyWave (comunicação serial).

Construindo um protótipo de equipamento para transmissão de dados em tempo real via internet

Danilo R. Vieira

Preços

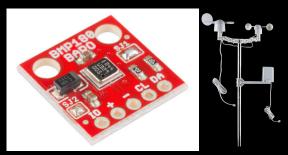
Arduino UNO: R\$ 105


Arduino com kit: R\$ 200 a R\$ 330

Clones nacionais do Arduino: R\$ 69 a R\$ 79

Garagino: R\$ 29

Fontes: www.labdegaragem.org www.robocore.net


EXIBIÇÃO DOS DADOS OLED

Mais parâmetros

Foto: Atlas Scientific www.atlas-scientific.com

Fotos: SparkFun www.sparkfun.com

Fotos: Adafruit www.adafruit.com

Fonte de energia

Ruído nas medidas

Fontes de ruído:

- Bombas;
- Outros motores;
- Instalações elétricas ruins;
- Montagem do circuito eletrônico.

Solução: capacitores ou componentes especializados

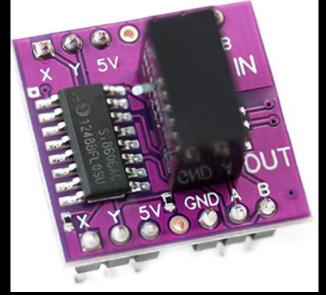
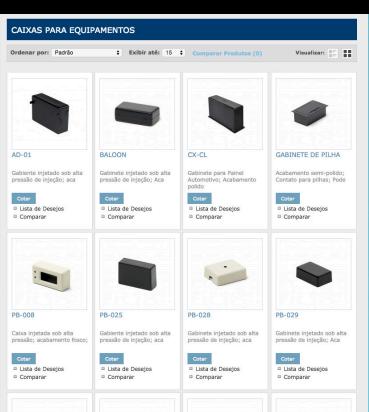


Foto: Atlas Scientific www.atlas-scientific.com


Automação

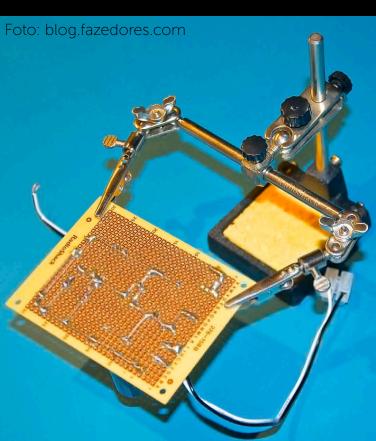
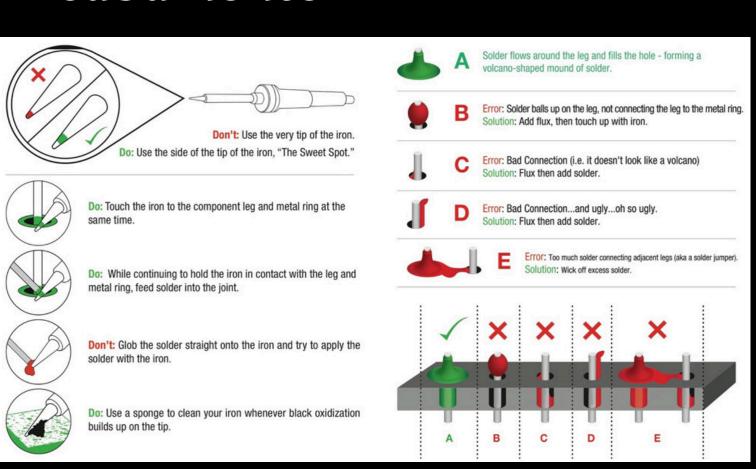
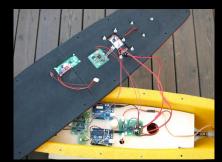

Rele

Foto: SparkFun www.sparkfun.com


Acabamento

http://www.patola.com.br/

Acabamento



Outras plataformas

http://letsmakerobots.com/node/21098



Outras plataformas

http://dzlsevilgeniuslair.blogspot.dk/search/label/ROV

http://openrov.com

Exercício prático

Este é o DS18B20, um sensor a prova d'água que fornece uma leitura digital de temperatura.

Exercício prático

```
byte mac[] = \{0x90, 0xA2, 0xDA, 0x0E, 0xDB, 0xB6\};
IPAddress ip(192, 168, 1, 110);
EthernetClient client;
const byte server[] = {54, 86, 132, 254};
boolean lastConnected = false;
int DS18S20 Pin = 8;
OneWire ds(DS18S20 Pin);
void setup() {
    delay(1000);
    Ethernet.begin(mac, ip);
    Serial.begin(9600);
void loop() {
    float T = getTemp();
    httpRequest(T);
    delay(10 * 60 * 1000); // 10min
```

Exercício prático

```
void httpRequest(double T) {
    if (client.connect(server, 80)) {
        client.print("GET /input/Jxyjr7DmxwT?");
        client.print("private_key=gzgnB4Va&T=");
        client.print(T, 1);
        client.println(" HTTP/1.1");
        client.println("Host: data.sparkfun.com");
        client.println("User-Agent: arduino");
        client.println("Connection: close");
        client.println();
    } else {
        client.stop();
    }
    Serial.print(T, 1);
}
```

Onde aprender mais

Em inglês:

learn.adafruit.com

learn.sparkfun.com

www.hackaday.com

Em português:

blog.filipeflop.com

www.labdegaragem.com

www.embarcados.com.br

blog.fazedores.com

Esta apresentação está em: www.danilorvieira.com/minicurso/

danilo@danilorvieira.com